Operation and Service

Commercial Generator Sets

Models: COM5

KOHLER® POWER SYSTEMS___

TP-6482 8/06

California Proposition 65

Engine exhaust from this product contains chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.

Product Identification Information

Product identification numbers determine service parts. Record the product identification numbers in the spaces below immediately after unpacking the products so that the numbers are readily available for future reference. Record field-installed kit numbers after installing the kits.

Generator Set Identification Numbers Record the product identification numbers from the

generator set nameplat	e(s).
Model Designation Specification Number _ Serial Number	
Accessory Number	Accessory Description

Engine Identification

Record the product identification information from the engine nameplate.
Manufacturer
Model Designation
Serial Number

Table of Contents

Product Identification Information 2		
Safety Precautions and Instructions		
Introduction		
		rice Parts 10
Section 1 Speci		ons
	1.1	System Description
	1.2	Generator Set Functional Description
	1.3	Specifications
	1.4	Service Views
Section 2 Opera	ation .	
	2.1	Prestart Checklist
	2.2	Exercising Generator Set
	2.3	Controller Operation 10
		2.3.1 Control Connections
		2.3.2 Remote Start/Stop Connections
		2.3.3 Starting Generator Set
		2.3.4 Stopping Generator Set
		2.3.5 Status Indicators
		2.3.6 Fault Shutdowns
		2.3.7 Control Resetting Procedure (Following Fault Shutdown)
	2.4	Circuit Protection
Section 3 Scheo	duled	Maintenance
	3.1	Routine Maintenance
	3.2	Service Schedule
	3.3	Service Access
	3.4	Lubrication System
		3.4.1 Oil Check
		3.4.2 Engine Oil Recommendation
		3.4.3 Oil Change Procedure
		3.4.4 Low Oil Pressure Shutdown
	3.5	Air Cleaner Element and Precleaner
		3.5.1 Precleaner Service
		3.5.2 Paper Element Service
	3.6	Fuel System
	3.7	Battery 28
	3.8	Ignition System
		3.8.1 Ignition System Description
		3.8.2 Spark Plug 29
	3.9	Cooling System
	3.10	Electronic Governor
	3.11	Exhaust System
	3.12	Alternator Service
Section 4 Gene	ral Tro	publeshooting 3
	4.1	Troubleshooting Chart
	4.2	Generator Set/Controller System Troubleshooting Flowcharts
Section 5 Comp	onen	t Testing and Adjustment 4
	5.1	Operating Generator Set Outside Enclosure
		5.1.1 Test Equipment
		5.1.2 Lifting Generator Set
	5.2	Circuit Protection
	5.3	Voltage Rectifier 4

Table of Contents, continued

	5.4	Electronic Governor		
			Governor Checks	43
			Stepper Motor Check	44
	5.5	_	System	45
		5.5.1	Ignition Trigger	45
		5.5.2	Ignition Module	46
		5.5.3	Ignition Coil	47
	5.6			47
	5.7	•	tem	48
			Fuel Regulators	49
		5.7.2	Fuel Conversion	50
			Fuel Conversion	50
			Fuel System Recalibration	51 51
	5.8		or	52
	5.0	5.8.1	Stator	52
		5.8.2	Rotor	53
	5.9		utdown Switches	53
0				
Section 6 Cont		-	and Test	55
	6.1	-	e of Operation	55
			Starting Sequence	55
			Running Sequence	55
	0.0		Stopping Sequence	55
	6.2		Connections	56
		6.2.1 6.2.2	Generator Set Master Switch	56
		_	Remote Start/Stop Connections	56
	6.0			56
	6.3		utdowns	56 57
	6.4		Control Resetting Procedure (Following Fault Shutdown)utdown Tests	57
	0.4	6.4.1	Low Oil Pressure (LOP) Shutdown	58
		_	High Engine Temperature (HET) Shutdown	
			Overcrank Shutdown	58
			Overspeed Shutdown	58
	6.5		Board Tests	59
	0.0	6.5.1	Fuel Control Circuit	59
		6.5.2	Speed Sensing and Governor (Throttle Control) Circuits	
		6.5.3	Start Circuits	
		6.5.4	Ignition Circuits	
	6.6	Voltage I	Programming Shunt	60
	6.7	•	Board Replacement	
Section 7 Disas	eamhl		embly	63
Section / Disas	7.1	-	nbly Procedure	63
	7.1		hbly Procedure	65
			•	
Section 8 Diagi	ams a	nd Drawi	ngs	67
Appendix A Ab	brevia	tions		71
Appendix B Co	mmon	Hardwar	e Application Guidelines	73
Appendix C Ge	neral 1	Forque S _l	pecifications	74
Appendix D Co	mmon	Hardwar	e Identification	75
Annendiy E Co	mmon	Hardwar	a List	76

4 Table of Contents TP-6482 8/06

Safety Precautions and Instructions

IMPORTANT SAFETY INSTRUCTIONS. Electromechanical equipment, including generator sets and accessories, can cause bodily harm and pose life-threatening danger when improperly installed, operated, or maintained. To prevent accidents be aware of potential dangers and act safely. Read and follow all safety precautions and instructions. SAVE THESE INSTRUCTIONS.

This manual has several types of safety precautions and instructions: Danger, Warning, Caution, and Notice.

DANGER

Danger indicates the presence of a hazard that will cause severe personal injury, death, or substantial property damage.

WARNING

Warning indicates the presence of a hazard that *can cause severe personal injury, death,* or *substantial property damage*.

CAUTION

Caution indicates the presence of a hazard that will or can cause minor personal injury or property damage.

NOTICE

Notice communicates installation, operation, or maintenance information that is safety related but not hazard related.

Safety decals affixed to the equipment in prominent places alert the operator or service technician to potential hazards and explain how to act safely. The decals are shown throughout this publication to improve operator recognition. Replace missing or damaged decals.

Accidental Starting

WARNING

Accidental starting. Can cause severe injury or death.

Disconnect the battery cables before working on the generator set. Remove the negative (-) lead first when disconnecting the battery. Reconnect the negative (-) lead last when reconnecting the battery.

Disabling the generator Accidental starting can cause severe injury or death. working on the generator set or equipment connected to the set, disable the generator set as follows: (1) Place the generator set start/stop switch in the STOP (2) Disconnect the power to the battery charger, if equipped. (3) Remove the battery cables, negative (-) lead first. Reconnect the negative (-) lead last when reconnecting the battery. Follow these precautions to prevent the starting of the generator set by the remote start/stop switch.

Battery

▲ WARNING

Sulfuric acid in batteries. Can cause severe injury or death.

Wear protective goggles and clothing. Battery acid may cause blindness and burn skin.

▲ WARNING

Explosion.

Can cause severe injury or death. Relays in the battery charger cause arcs or sparks.

Locate the battery in a well-ventilated area. Isolate the battery charger from explosive fumes.

Battery electrolyte is a diluted sulfuric acid. Battery acid can cause severe injury or death. Battery acid can cause blindness and burn skin. Always wear splashproof safety goggles, rubber gloves, and boots when servicing the battery. Do not open a sealed battery or mutilate the battery case. If battery acid splashes in the eves or on the skin, immediately flush the affected area for 15 minutes with large quantities of clean water. Seek immediate medical aid in the case of eye contact. Never add acid to a battery after placing the battery in service, as this may result in hazardous spattering of battery acid.

Battery acid cleanup. Battery acid can cause severe injury or death. Battery acid is electrically conductive and corrosive. Add 500 g (1 lb.) of bicarbonate of soda (baking soda) to a container with 4 L (1 gal.) of water and mix the neutralizing solution. Pour the neutralizing solution on the spilled battery acid and continue to add the neutralizing solution to the spilled battery acid until all evidence of a chemical reaction (foaming) has ceased. Flush the resulting liquid with water and dry the area.

Battery gases. Explosion can cause severe injury or death. Battery gases can cause an explosion. Do not smoke or permit flames or sparks to occur near a battery at any time, particularly when it is charging. Do not dispose of a battery in a fire. To prevent burns and sparks that could cause an explosion, avoid touching the battery terminals with tools or other metal objects. Remove all iewelry before servicing the equipment. Discharge static electricity from your body before touching batteries by first touching a grounded metal surface away from the battery. To avoid sparks, do not disturb the battery charger connections while the battery is charging. Always turn the battery charger off before disconnecting the battery connections. Ventilate the compartments containing batteries to prevent accumulation of explosive gases.

Battery short circuits. Explosion can cause severe injury or death. Short circuits can cause bodily injury and/or equipment damage. Disconnect the battery before generator set installation maintenance. Remove all jewelry before servicing the equipment. Use tools with insulated handles. Remove the negative (-) lead first when disconnecting the battery. Reconnect the negative (-) lead last when reconnecting the battery. connect the negative (-) battery cable to the positive (+) connection terminal of the starter solenoid. Do not test the battery condition by shorting the terminals together.

Engine Backfire/Flash Fire

Fire.
Can cause severe injury or death.

Do not smoke or permit flames or sparks near fuels or the fuel system.

Servicing the air cleaner. A sudden backfire can cause severe injury or death. Do not operate the generator set with the air cleaner removed.

Combustible materials. A fire can cause severe injury or death. Generator set engine fuels and fuel vapors are flammable and explosive. Handle these materials carefully to minimize the risk of fire or explosion. Equip the compartment or nearby area with a fully charged fire extinguisher. Select a fire extinguisher rated ABC or BC for electrical fires or as recommended by the local fire code or an authorized agency. Train all fire extinguisher personnel on operation and fire prevention procedures.

Exhaust System

Carbon monoxide.
Can cause severe nausea, fainting, or death.

The exhaust system must be leakproof and routinely inspected.

Generator set operation. Carbon monoxide can cause severe nausea, fainting, or death. Carbon monoxide is an odorless, colorless, tasteless, nonirritating gas that can cause death if inhaled for even a short time. Avoid breathing exhaust fumes when working on or near the generator set. Never operate the generator set inside a building unless the exhaust gas is piped safely outside. Never operate the generator set where exhaust gas could accumulate and seep back inside a potentially occupied building.

Carbon monoxide symptoms. Carbon monoxide can cause severe nausea, fainting, or death. Carbon monoxide is a poisonous gas present in exhaust gases. Carbon monoxide poisoning symptoms include but are not limited to the following:

- Light-headedness, dizziness
- Physical fatigue, weakness in joints and muscles
- Sleepiness, mental fatigue, inability to concentrate or speak clearly, blurred vision
- Stomachache, vomiting, nausea If experiencing any of these symptoms and carbon monoxide poisoning is possible, seek fresh air immediately and remain active. Do not sit, lie down, or fall asleep. Alert others to the possibility of carbon monoxide poisoning. Seek medical attention if the condition of affected persons does not improve within minutes of breathing fresh air.

Fuel System

Explosive fuel vapors.
Can cause severe injury or death.

Use extreme care when handling, storing, and using fuels.

Gas fuel leaks. **Explosive fuel** vapors can cause severe injury or death. Fuel leakage can cause an explosion. Check the LP vapor gas or natural gas fuel system for leakage by using a soap and water solution with the fuel system test pressurized to 6-8 ounces per square inch (10-14 inches water column). Do not use a soap solution containing either ammonia or chlorine because both prevent bubble formation. A successful test depends on the ability of the solution to bubble.

Hazardous Noise

A CAUTION

Hazardous noise. Can cause hearing loss.

Never operate the generator set without a muffler or with a faulty exhaust system.

Engine noise. Hazardous noise can cause hearing loss. Generator sets not equipped with sound enclosures can produce noise levels greater than 105 dBA. Prolonged exposure to noise levels greater than 85 dBA can cause permanent hearing loss. Wear hearing protection when near an operating generator set.

Hazardous Voltage/ Electrical Shock

Hazardous voltage. Can cause severe injury or death.

Only authorized personnel should open the enclosure.

(600 volts and under)

Hazardous voltage. Moving rotor. Can cause severe injury or death.

Operate the generator set only when all guards and electrical enclosures are in place.

Grounding electrical equipment. Hazardous voltage can cause severe injury or death. Electrocution is possible whenever electricity is present. Open the main circuit breakers of all power sources before servicing the equipment. Configure the installation to electrically ground the generator set and related equipment and electrical circuits to comply with applicable codes and standards. Never contact electrical leads or appliances when standing in water or on wet ground because these conditions increase the risk of electrocution.

High voltage test. Hazardous voltage can cause severe injury or death. Follow the instructions of the test equipment manufacturer when performing high-voltage tests on the rotor or stator. An improper test procedure can damage equipment or lead to generator set failure.

Connecting the battery and the battery charger. Hazardous voltage can cause severe injury or death. Reconnect the battery correctly, positive to positive and negative to negative, to avoid electrical shock and damage to the battery charger and battery(ies). Have a qualified electrician install the battery(ies).

Short circuits. Hazardous voltage/current can cause severe injury or death. Short circuits can cause bodily injury and/or equipment damage. Do not contact electrical connections with tools or jewelry while making adjustments or repairs. Remove all jewelry before servicing the equipment.

Testing live electrical circuits. Hazardous voltage or current can cause severe injury or death. Have trained and qualified personnel take diagnostic measurements of live circuits. Use adequately rated test equipment with electrically insulated probes and follow the instructions of the test equipment manufacturer when performing voltage tests. Observe the following precautions when performing voltage tests: (1) Remove all jewelry. (2) Stand on a dry, approved electrically insulated mat. (3) Do not touch the enclosure or components inside the enclosure. (4) Be prepared for the system to operate automatically. (600 volts and under)

Hot Parts

Hot engine and exhaust system. Can cause severe injury or death.

Do not work on the generator set until it cools.

Servicing the alternator. Hot parts can cause severe injury or death. Avoid touching the alternator field or exciter armature. When shorted, the alternator field and exciter armature become hot enough to cause severe burns.

Servicing the exhaust system. Hot parts can cause severe injury or death. Do not touch hot engine parts. The engine and exhaust system components become extremely hot during operation.

Moving Parts

Rotating parts.
Can cause severe injury or death.

Operate the generator set only when all guards, screens, and covers are in place.

Tightening the hardware. Flying projectiles can cause severe injury or death. Loose hardware can cause the hardware or pulley to release from the generator set engine and can cause personal injury. Retorque crankshaft and rotor hardware after servicing. Do not loosen the crankshaft hardware or rotor thrubolt when making adjustments or servicing the generator set. Rotate the crankshaft manually in a clockwise direction only. Turning the crankshaft bolt or rotor thrubolt counterclockwise can loosen the hardware.

Servicing the generator set when it is operating. Exposed moving parts can cause severe injury or death. Keep hands, feet, hair, clothing, and test leads away from the belts and pulleys when the generator set is running. Replace guards, screens, and covers before operating the generator set.

Notice

NOTICE

Hardware damage. The engine and generator set may use both American Standard and metric hardware. Use the correct size tools to prevent rounding of the bolt heads and nuts.

NOTICE

When replacing hardware, do not substitute with inferior grade hardware. Screws and nuts are available in different hardness ratings. To indicate hardness, American Standard hardware uses a series of markings, and metric hardware uses a numeric system. Check the markings on the bolt heads and nuts for identification.

NOTICE

Electrostatic discharge (ESD) damages electronic circuit boards. Prevent electrostatic discharge damage by wearing an approved grounding wrist strap when handling electronic circuit boards or integrated circuits. An approved grounding wrist strap provides a high resistance (about 1 megohm), not a direct short, to ground.

NOTICE

Fuse replacement. Replace fuses with fuses of the same ampere rating and type (for example: 3AB or 314, ceramic). Do not substitute clear glass-type fuses for ceramic fuses. Refer to the wiring diagram when the ampere rating is unknown or questionable.

This manual provides operation, troubleshooting, and repair instructions for model Alpha 5 and COM5 generator sets and controllers.

The generator sets use a Kohler® CV-14 engine with modified ignition, governor, and fuel systems. Refer to the engine service manual for engine information not covered in this manual.

Information in this publication represents data available at the time of print. Kohler Co. reserves the right to change this publication and the products represented without notice and without any obligation or liability whatsoever.

Read this manual and carefully follow all procedures and safety precautions to ensure proper equipment operation and to avoid bodily injury. Read and follow the Safety Precautions and Instructions section at the beginning of this manual. Keep this manual with the equipment for future reference.

The equipment service requirements are very important to safe and efficient operation. Inspect the parts often and perform required service at the prescribed intervals. Maintenance work must be performed by appropriately skilled and suitably-trained maintenance personnel familiar with generator set operation and service.

California Emission Certification

An engine or generator set with one of the following identification labels is certified to meet Small Off-Road Engine (SORE) emission standards for EPA/CARB.

IMPORTANT ENGINE INFORMATION THIS ENGINE MEETS EMISSION REGULATIONS FOR U.S. EPA PH1 SMALL ENGINES AND 2000-2001 CALIFORNIA SI SORES DISPLACEMENT: □ FAMILY: BUILD DATE: REFER TO OWNERS MANUAL FOR SAFETY, MAINTENANCE SPECS AND ADJUSTMENTS FOR SALES AND SERVICE IN US/CANADA CALL: 1-800-544-2444 THIS ENGINE IS CERTIFIED TO OPERATE ON [VER SYSTEMS

This engine/generator is certified to operate using natural gas or propane fuel.

This engine is certified with engine modifications made by the generator set manufacturer.

The Emission Compliance Period referred to on the Emission Control or Air Index label indicates the number of operating hours for which the engine has been shown to meet CARB emission requirements. The following table provides the Engine Compliance Period (in hours) associated with the category descriptor found on the certification label.

Emission Compliance Period (hours)			
CARB	Moderate, 125	Intermediate, 250	Extended, 500

Refer to certification label for engine displacement.

Exhaust Emission Control System for COM5 (CV14) is EM.

TP-6482 8/06 Introduction 9

^{*}Spark-Ignited Small Off-Road Engines

Maintenance and Service Parts

Figure 1 lists some routine maintenance and service parts for your generator set. Parts Catalog TP-6091 provides a complete list of replacement parts.

Part Description	Part Number	Part Description	Part Number
Maintenance Parts:		Test Fixtures:	
Air Cleaner Foam Element	12 083 07	Controller board	GM17820
Air Cleaner Paper Element	12 083 15	Cover plate	GM23579
Exhaust gasket	12 041 03	Exhaust extension with test port	GM23580
Fuse, 200 amp (36 volt)	GM13492	Extended wiring harness	GM23713
Fuse, 150 amp (48 volt)	337123	Silencer	GM11509
Oil Filter	12 050 01		
Spark Plug	24 132 03		

Figure 1 Maintenance and Service Parts

Service Assistance

For professional advice on generator set power requirements and conscientious service, please contact your nearest Kohler distributor or dealer.

- Consult the Yellow Pages under the heading Generators—Electric
- Visit the Kohler Power Systems website at KohlerPowerSystems.com
- Look at the labels and stickers on your Kohler product or review the appropriate literature or documents included with the product
- Call toll free in the US and Canada 1-800-544-2444
- Outside the US and Canada, call the nearest regional office

Headquarters Europe, Middle East, Africa (EMEA)

Kohler Power Systems ZI Senia 122 12, rue des Hauts Flouviers 94517 Thiais Cedex France

Phone: (33) 1 41 735500 Fax: (33) 1 41 735501

Asia Pacific

Power Systems Asia Pacific Regional Office Singapore, Republic of Singapore

Phone: (65) 6264-6422 Fax: (65) 6264-6455

China

North China Regional Office, Beijing

Phone: (86) 10 6518 7950 (86) 10 6518 7951 (86) 10 6518 7952

Fax: (86) 10 6518 7955

East China Regional Office, Shanghai

Phone: (86) 21 6288 0500 Fax: (86) 21 6288 0550

India, Bangladesh, Sri Lanka

India Regional Office Bangalore, India

Phone: (91) 80 3366208

(91) 80 3366231

Fax: (91) 80 3315972

Japan, Korea

North Asia Regional Office

Tokyo, Japan

Phone: (813) 3440-4515 Fax: (813) 3440-2727

Latin America

Latin America Regional Office Lakeland, Florida, USA

Phone: (863) 619-7568 Fax: (863) 701-7131

10 Maintenance and Service Parts TP-6482 8/06

1.1 System Description

The COM5 generator set provides reliable backup DC power to cable TV systems or telecommunication sites in place of, or in addition to, batteries. The COM5 is available in 36 and 48 VDC models. The generator set nameplate indicates the unit's rated voltage.

The system batteries provide power at 36 or 48 volts. When power fails, the control system signals the generator set to start. The generator set provides DC power for continued or reserve operation of the system.

The COM5 generator set has both local and remote annunciation and control capabilities. The unit runs on natural gas or LP vapor.

1.2 Generator Set Functional Description

The COM5 generator set system consists of the generator set (engine and generator) and the control system. The generator set provides regulated DC voltage to the telecommunications power system. The control system provides complete control of the engine and generator, accepts remote control commands, and delivers local and remote annunciation of unit status. Internal control functions include start and stop logic, fault monitoring, unit voltage control, engine speed (rpm) governing, and local LEDs for fault annunciation. Status indicators include low oil pressure, high temperature, overspeed, overcrank, and engine running.

Under very light loads, the generator set operates at low speed. As loads increase, the control system maintains constant generator output voltage by increasing the generator set engine speed.

The Kohler CV14 engine drives a direct-connected, variable-speed, 3-phase, voltage-specific generator to produce high-frequency AC power. A 3-phase, full-wave rectifier in the control system rectifies the output to produce low-ripple, unfiltered DC power. The DC inline fuse provides protection for downstream devices in case of overload.

1.3 Specifications

Figure 1-1, Figure 1-2, and Figure 1-3 contain generator set, alternator, and engine specifications. Refer to Section 3, Scheduled Maintenance, for service details.

Item	36 VDC	48 VDC
Manufacturer	Ko	hler
Dimensions, L x W x H, mm (in.)		80 x 514 5 x 20.24)
Weight, dry, kg (lb.)	68	(150)
Rated kW*	5	3.5 or 5†
Rated voltage (after rectifier)	39	52
Rated amps	128	96

^{*} Derate approximately 3.5% per 300 m (1000 ft.) over 600 m (2000 ft.) above sea level. Derate 1% for each 5.5°C (10°F) increase in temperature above 49°C (120°F).

Figure 1-1 Generator Set Specifications

Item	36 VDC	48 VDC
Stator resistance, ohms	0.014	0.024
Stator type	3-Phase, 3-Lead, Ungrounded	
Excitation method (rotor)	Permaner Brusl	0 /
Coupling type	Direct-to-Engine	
Insulation (stator)	Class 15 Varr Vacuum-In	nish,
Winding material	Сор	per
Stator-to-alternator adapter bolt torque, Nm (ft. lb.)	11 (8.1)
Flywheel-to-shaft bolt torque, Nm (ft. lb.)	67 (4	19.4)
Rotor-to-flywheel bolt torque, Nm (ft. lb.)	38 (2	28.0)
Fan-to-flywheel bolt torque, Nm (ft. lb.)	25 (1	18.4)

Figure 1-2 Alternator Specifications

Check the generator set nameplate for the kW rating.

Item	Specification
Manufacturer	Kohler
Make/model	CV14
Cycle	4
Compression ratio	8.5:1
Displacement, cc (cu. in.)	398 (24.3)
Rated horsepower (using natural gas fuel), HP	10.5
Engine speed, rpm	2800-3600
Overspeed shutdown, rpm	3750
Bore, mm (in.)	87 (3.43)
Stroke, mm (in.)	67 (2.64)
Valve train	Overhead Valve
Valve material:	
Intake	Steel
Exhaust	Stellite® Face
Cylinders, qty.	1
Cylinder block material	Aluminum w/Cast Iron Liners
Cylinder head material	Aluminum
Piston rings: qty., type	2 Compression, 1 Oil
Crankshaft material	Heat Treated, Ductile Iron Casting
Bearings: qty., type	2, Replaceable Sleeve
Governor	Electronic
Starter motor	Electric, Solenoid Shift
Lubrication system	Full Pressure
Oil capacity (with filter and cooler), L (qt.)	2.0 (2.1)
Oil type (summer/winter)	Synthetic 5W-30
Oil pressure, kPa (psi)	172-241 (25-35)
Low oil pressure, kPa (psi)	13.8-34.5 (2-5)
Fuel type	Natural Gas or Propane
Fuel pressure, kPa (in. water column)	1.7 to 2.7 (7 to 11)
Fuel consumption at 5 kW:	
Natural gas, 1000 Btu/ft. ³	
m ³ /hr. (cfh)	2.3 (80)
Propane, 2516 Btu/ft. ³ m ³ /hr. (cfh)	1.1 (40):
kg/hr. (lb./hr.)	1.1 (40); 2.1 (4.66)
Lph (gph)	4.2 (1.1)
Battery voltage, VDC	12
Battery ground	Negative
Battery recommendation (minimum)	425 CCA at -18°C (0°F)
Spark plug type (Kohler Part No.)	24 132 03
Spark plug gap, mm (in.)	0.75 (0.030)
Spark plug tightening torque, Nm (ft. lb.)	24.4-29.8 (18-22)
Ignition system	Battery/Coil
Cooling system	Integrated Air Cooling
High engine temperature, °C (°F)	152 (305)

Figure 1-3 Engine Specifications

12 Section 1 Specifications TP-6482 8/06

1.4 Service Views

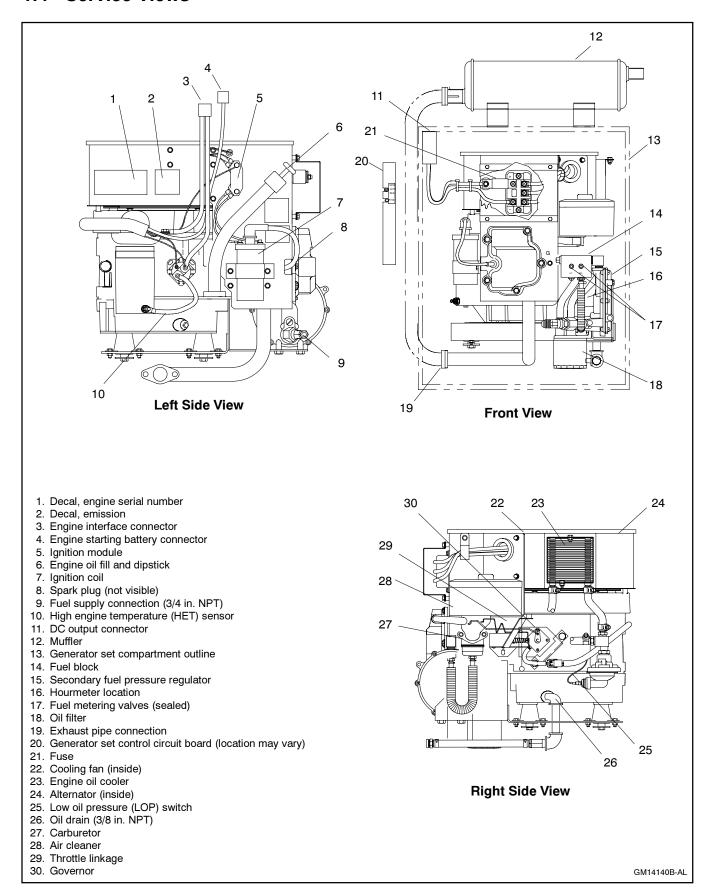
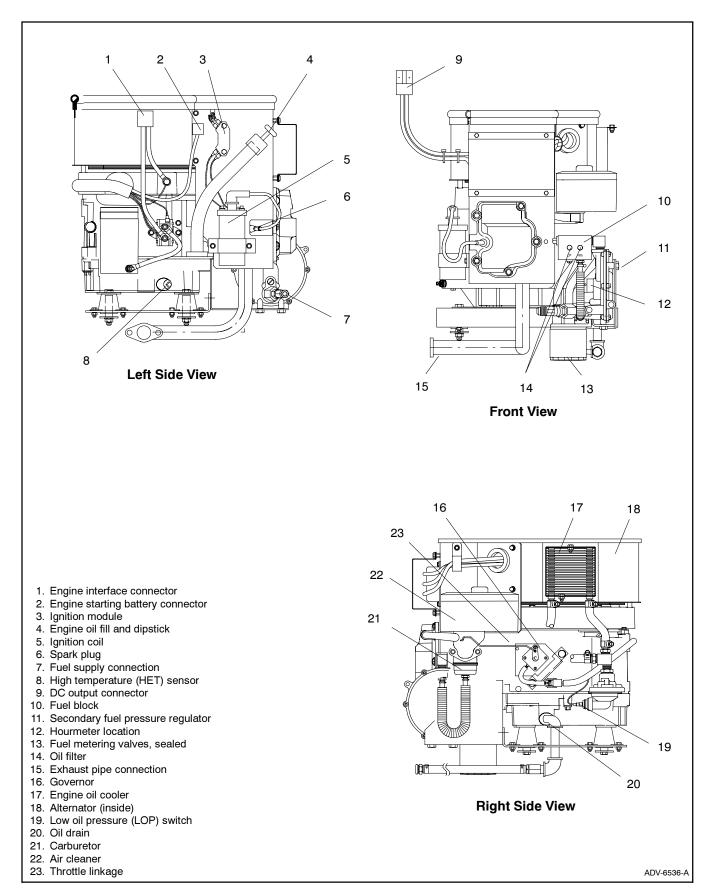
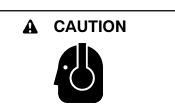
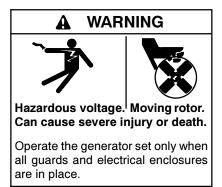


Figure 1-4 COM5 Service Views




Figure 1-5 Alpha 5

Fire.
Can cause severe injury or death.


Do not smoke or permit flames or sparks near fuels or the fuel system.

Combustible materials. A fire can cause severe injury or death. Generator set engine fuels and fuel vapors are flammable and explosive. Handle these materials carefully to minimize the risk of fire or explosion. Equip the compartment or nearby area with a fully charged fire extinguisher. Select a fire extinguisher rated ABC or BC for electrical fires or as recommended by the local fire code or an authorized agency. Train all personnel on fire extinguisher operation and fire prevention procedures.

Hazardous noise. Can cause hearing loss.

Never operate the generator set without a muffler or with a faulty exhaust system.

2.1 Prestart Checklist

To ensure satisfactory operation, perform the following checks or inspections before or at each startup, as designated, and at the intervals specified in the service schedule. Some checks require verification after the unit starts.

Air Cleaner. Check for a clean and installed air cleaner element to prevent unfiltered air from entering the engine.

Air Inlets and Outlets. Check for clean and unobstructed cabinet air inlets and outlets. Check for obstructions that could block the flow of cooling air. Keep the air intake area clean. Do not leave rags, tools, or debris on or near the generator set.

Battery. Check for clean and tight battery connections. Consult the battery manufacturer's instructions regarding battery care and maintenance.

Exhaust System. Check for exhaust leaks and blockages. Check the silencer and piping condition and check for tight exhaust system connections.

Inspect the exhaust system components (exhaust manifold, exhaust line, flexible exhaust, clamps, silencer, and outlet pipe) for cracks, leaks, and corrosion.

- Check for corroded or broken metal parts and replace them as needed.
- Check for loose, corroded, or missing clamps and hangers. Tighten or replace the exhaust clamps and/ or hangers as needed.
- Check that the exhaust outlet is unobstructed.
- Visually inspect for exhaust leaks. Check for carbon or soot residue on exhaust components. Carbon and soot residue indicates an exhaust leak. Replace or repair leaking parts as needed.

Oil Level. Maintain the oil level at or near, not over, the full mark on the dipstick.

2.2 Exercising Generator Set

Operate the generator set under load weekly. Perform all of the prestart checks before starting the exercise procedure. Start the generator set according to the starting procedure in Section 2.3.3. While the generator set is operating, listen for a smooth-running engine and visually inspect the generator set for fluid or exhaust leaks.

TP-6482 8/06 Section 2 Operation 15

2.3 Controller Operation

Microprocessor-based controls provide complete control of the engine and generator. The control system accepts remote control inputs for generator start and run and delivers local and remote annunciation of unit status. Internal functions of the controls include start and stop logic, fault monitoring, generator voltage and engine speed governing, and fault annunciation through local LEDs.

A three-position generator set master switch on the control board allows local or remote control of the generator set. The RUN and STOP positions provide local control of the generator set. The STOP position also resets controller faults. The AUTO position allows a remote device to start and stop the generator set. See Section 2.3.2 for remote start/stop connection information.

Note: Set the generator set master switch to the AUTO position to allow remote control of generator set.

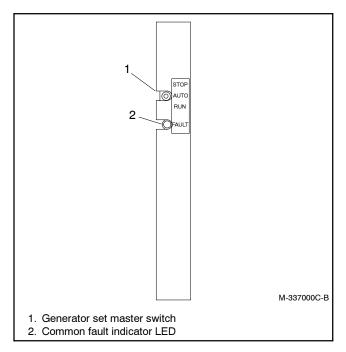


Figure 2-1 Generator Set Controls

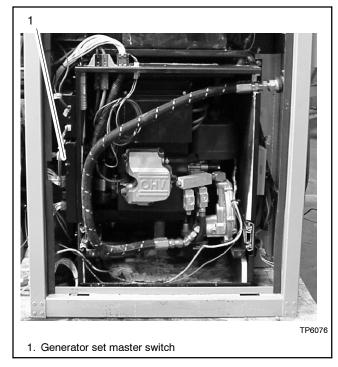


Figure 2-2 Generator Set Master Switch Location

2.3.1 Control Connections

Wiring harnesses connect the generator set control board to the remote controls and the engine. Figure 2-3 shows the wiring harness connections to the control board. Refer to the wiring diagrams in Section 8 for connector pin identification. Figure 2-5 defines the abbreviations used for the pin diagrams.

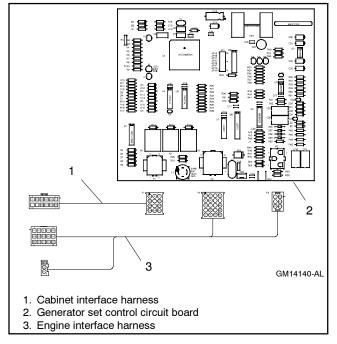


Figure 2-3 Generator Set Control Connections

16 Section 2 Operation TP-6482 8/06

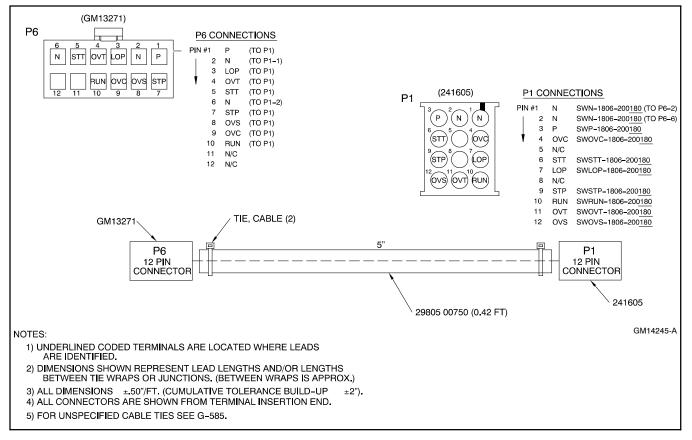


Figure 2-4 Cabinet Interface Harness Connectors

Abbreviation	Definition
70	Run
71	Crank
AC1	Speed sensing
AC2	Speed sensing
DCN	DC negative
DCP	DC positive
LOP	Low oil pressure
M1	Throttle control
M2	Throttle control
М3	Throttle control
M4	Throttle control
N	Ground
N/C	Not connected
OVC	Overcrank
ovs	Overspeed
OVT	Overtemperature
Р	Positive
STP	Stop
STT	Start

Figure 2-5 Pin Abbreviations

TP-6482 8/06 Section 2 Operation 17

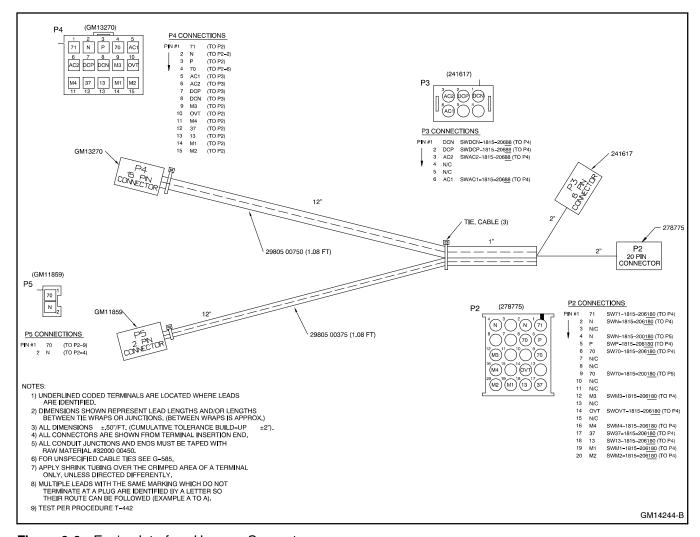


Figure 2-6 Engine Interface Harness Connectors

2.3.2 Remote Start/Stop Connections

To operate the generator set from a remote location, use a three-wire start/stop switch connected to pins 5, 6, and 7 of connector P6 on the cabinet interface harness. See the wiring diagrams in Section 8.

Set the generator set master switch to the AUTO position for remote operation. To start the generator set, open a contact between pins 6 and 7 and close a contact between pins 5 and 6 of connector P6. Close the contact between pins 6 and 7 to stop the generator set.

2.3.3 Starting Generator Set

The following procedures describe the actions required to start the generator set.

Local Starting. Move the generator set master switch to the RUN position to immediately start the generator set.

Remote Starting. Move the generator set master switch to the AUTO position to allow startup by the remote start/stop contacts. See Section 2.3.2 for the remote start/stop switch connections.

At initial startup, the engine's hydraulic lifters may produce a metallic clicking sound. This is caused by the hydraulic lifter leakdown during storage. Run the generator for 5 minutes. The noise will normally cease in the first minute. If the noise continues, run the generator at mid throttle for 20 minutes.

Note: The control board provides up to 70 seconds of cyclic cranking before overcrank shutdown occurs.

18 Section 2 Operation TP-6482 8/06

2.3.4 Stopping Generator Set

The following procedures describe the actions required to stop the generator set.

Local Stopping. Move the generator set master switch to the STOP position. The generator set stops immediately.

Remote Stopping. Close a remote contact between pins 6 and 7 of connector P6 of the cabinet interface harness. The generator set shuts down regardless of the generator set master switch position.

2.3.5 Status Indicators

Eight LEDs on the generator set control board provide system status and fault annunciation. LEDs indicate the status or fault shutdowns listed in Figure 2-7.

LED	Indicates	Remote Annunciation
1	Overspeed shutdown	Yes
2	Overtemperature shutdown	Yes
3	Engine running status indicator	Yes
4	Low oil pressure fault shutdown	Yes
5	Overcrank shutdown	Yes
6	Ignition energized	No
7	Cranking energized	No
8	Common fault indicator	No

Figure 2-7 Control Board LEDs

Common fault LED8 is located on the edge of the control board. Figure 2-8 shows the LED locations.

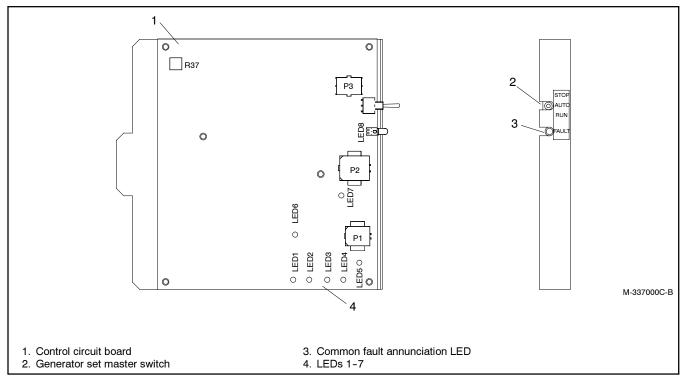


Figure 2-8 Control Board LEDs

TP-6482 8/06 Section 2 Operation 19

2.3.6 Fault Shutdowns

The generator set shuts down automatically under the fault conditions listed in Figure 2-9 and cannot be restarted until the controls are reset. Reset the controller by placing either the remote control switch or the generator set master switch in the STOP position. The high engine temperature fault automatically resets when the generator set cools.

Fault	Description
High engine temperature	Shuts down 5 seconds after the fault. When the engine cools, the fault clears and allows generator set to be started without resetting the controller. The high engine temperature shutdown does not function during the first 30 seconds after startup.
Low oil pressure	Shuts down 5 seconds after fault. The low oil pressure shutdown does not function during the first 30 seconds after startup.
	Note: The low oil pressure shutdown does not protect against low oil level.
Overcrank	Shuts down after 70 seconds of cyclic cranking. The factory sets the circuit board for three starting attempts: crank 20 seconds, rest 5 seconds, crank 20 seconds, rest 5 seconds, crank 20 seconds, overcrank fault.
	Overcrank shutdown also occurs in the case of a locked rotor. Shuts down 1 second after the fault is detected.
Overspeed	Shuts down immediately if the engine speed exceeds 3750 rpm.

Figure 2-9 Fault Shutdowns

2.3.7 Control Resetting Procedure (Following Fault Shutdown)

Use the following procedure to restart the generator set after a fault shutdown. Set either the remote control switch or the generator set master switch to the STOP position to reset the controls.

- 1. Move either the generator set master switch or the remote switch to the STOP position.
- Correct the cause of the fault shutdown. See the safety precautions at the beginning of this section before proceeding.
- 3. Start the generator set locally by moving the generator set master switch to the RUN position, or move the master switch to the AUTO position and start the generator set using the remote start switch. Run the generator set to verify that the cause of the shutdown has been corrected.
- 4. Move the generator set master switch to the STOP position to stop the generator set.
- 5. Move the generator set master switch to the AUTO position to return to standby operation.

2.4 Circuit Protection

A DC line limiter (fuse) interrupts the generator output in the event of a 50% overload or a short circuit in the wiring between the generator and the load. Replace the line limiter if it blows. See Maintenance and Service Parts in the Introduction of this manual for the fuse part number.

20 Section 2 Operation TP-6482 8/06

WARNING

Accidental starting. Can cause severe injury or death.

Disconnect the battery cables before working on the generator set. Remove the negative (-) lead first when disconnecting the battery. Reconnect the negative (-) lead last when reconnecting the battery.

Disabling the generator set. Accidental starting can cause severe injury or death. Before working on the generator set or connected equipment, disable the generator set as follows: (1) Move the generator set master switch to the OFF position. (2) Disconnect the power to the battery charger. (3) Remove the battery cables, negative (-) lead first. Reconnect the negative (-) lead last when reconnecting the battery. Follow these precautions to prevent starting of the generator set by an automatic transfer switch, remote start/stop switch, or engine start command from a remote computer.

Hot engine and exhaust system. Can cause severe injury or death.

Do not work on the generator set until it cools.

Servicing the exhaust system. Hot parts can cause severe injury or death. Do not touch hot engine parts. The engine and exhaust system components become extremely hot during operation.

Hazardous voltage. Will cause severe injury or death.

Only authorized personnel should open the enclosure.

all guards and electrical enclosures are in place.

Grounding electrical equipment. Hazardous voltage can cause severe injury or death. Electrocution is possible whenever electricity is present. Open the main circuit breakers of all power sources before servicing the equipment. Configure the installation to electrically ground the generator set and related equipment and electrical circuits to comply with applicable codes and standards. Never contact electrical leads or appliances when standing in water or on wet ground because these conditions increase the risk of electrocution.

Servicing the generator set when it is operating. Exposed moving parts can cause severe injury or death. Keep hands, feet, hair, clothing, and test leads away from the belts and pulleys when the generator set is running. Replace guards, screens, and covers before operating the generator set

3.1 **Routine Maintenance**

Refer to the following service schedule and the hourmeter located on the generator set to schedule routine maintenance. Perform maintenance on each item in the service schedule at the designated interval for the life of the generator set. Service units subject to extreme weather, long operating hours, or dusty or dirty conditions more frequently.

Generator set service. Have an authorized Kohler service distributor/dealer perform all generator set service. See the Safety Precautions and Instructions at the beginning of this manual before attempting to service or repair the generator set.

Engine service. Perform generator set engine service at the intervals specified by the service schedule in this For additional information contact an section. authorized Kohler service distributor/dealer to obtain engine service literature.

Generator service. Refer to the service schedule for items that require maintenance.

Tools. Tools and instruments used to perform some maintenance are not generally available to the generator set owner. It is recommended that service requiring special tools be performed by an authorized distributor/dealer.

3.2 Service Schedule

Perform the service listed in Figure 3-1 at the designated intervals for the life of the generator set. Refer to the service views in Section 1.4 for system component locations.

	See Section	Procedure					
System Component or Procedure		Visually Inspect	Check	Change	Clean	Test	Frequency
Fuel	3.6						
Inspect flexible lines and connections. Replace cracked or spongy hoses. *		Х		R			Q
Check the main LP tank supply level, if used.			Х				M
Inspect fuel piping for damage or corrosion.		X					Υ
Lubrication	3.4						
Check the oil level.	3.4.1	Х	Х				M or before use
Change the oil and replace the oil filter.	3.4.2, 3.4.3			R			Y or 100 hr.
Cooling	3.9						
Check that air ducts and louvers are clean and unobstructed.		Х	Х		Х		M or before use
Exhaust System	3.11						
Check for leakage. Carbon or soot residue indicates a leak. Repair leaks.		Х	Х	R			Y
Check for fire hazards.		Х	Х		Х		Υ
Check for loose or broken hangers and supports. Tighten or replace as needed.		Х	Х	R			Y
Battery							
Check battery charger operation and charge rate (if equipped).	Battery charger manual	Х	Х				М
Clean and tighten battery terminals.	3.7	X	Х		Х		Υ
Electrical System							
Inspect wiring and components for visible wear or damage.		X					Q
Check for abrasions where wiring is subject to motion.		Х	Х				S
Engine And Mounting							
Inspect for visible wear or damage.		Х					M
Inspect the air cleaner element; replace it if necessary.*	3.5	Х		R			Y or 500 hr.
Clean and oil the foam precleaner.	3.5.1				Х		100
Inspect the spark plug; replace if necessary.*	3.8.2	X		R			Y or 500 hr.
Control System							
Check remote control operation.	Controller manufacturer's instructions.					Х	М
Generator Set							
Check items listed in the Prestart Checklist.	2.1	Х					М
Exercise the generator set.	2.2					Х	W
General Condition Of Equipment							
Check for signs of vibration, leakage, excessive noise, extreme temperature, or deterioration.		х	Х		х		М
Inspect and clean the cabinet interior.		X			Х		Q
* Contact your local distributor/dealer for parts or se	ervice.	X Action R Replace as necessary			W=Weekly M=Monthly Q=Quarterly S=Six Months Y=Yearly		

Figure 3-1 Service Schedule

3.3 Service Access

Use the following procedure to gain access to the generator set for maintenance or service. Figure 3-2 and Figure 3-3.

A key is required to open the enclosure. Obtain the enclosure key from the equipment owner. Use the following procedure to gain access to the generator set for maintenance or service. See Figure 3-3.

Refer to the enclosure manufacturer's instruction manual for more information.

Note: Allow the exhaust system to cool before disconnecting the exhaust pipe. Inspect the exhaust gasket and replace it if necessary when reassembling the exhaust system. See the list of routine service parts in the Introduction of this manual for the gasket part number.

Generator Set Service Access

- 1. Remove the front door of the cabinet.
- 2. Place the generator set master switch in the STOP position.
- 3. Remove the front panel from the generator set compartment.
- 4. Disconnect the generator set battery harness, engine wiring harness, and load leads at the quickdisconnect plugs.
- 5. Turn off the fuel supply at the upstream valve and disconnect the fuel line on the right side of the cabinet. See Figure 3-3.

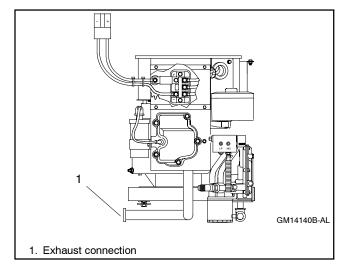


Figure 3-2 Exhaust Connection

- 6. Remove the back panel of the cabinet to gain access to the exhaust connection near the bottom of the unit.
- 7. Disconnect the engine exhaust pipe at the location show in Figure 3-2.
- 8. Grasp the generator tray at the sides and pull the generator set forward.
- 9. Remove the four bolts securing the generator set to the enclosure rails. Use appropriate lifting equipment to lift the generator set off the rails. The generator set weighs approximately 68 kg (150 lb.).

Note: Service fixtures are required to run the generator set outside the enclosure. Refer to Section 5.1 for instructions and precautions.

Figure 3-3 Generator Set Installed in Cabinet (door and front panel removed)

Return to Operation

Slide the generator set back into the enclosure and reconnect the exhaust pipe, fuel system, and wiring harnesses as described below.

- 1. Verify that the generator set master switch is in the STOP position.
- 2. Slide the generator set back into the enclosure.
- 3. Install the exhaust gasket and reconnect the exhaust pipe.
- 4. Reinstall the enclosure back panel.
- 5. Reconnect the fuel line and turn on the fuel supply.
- 6. Check for fuel leaks.
- 7. Reconnect the engine wiring harness, load leads, and battery harness.
- 8. Reconnect the generator set engine battery harness.
- Move the generator set master switch to the center (AUTO) position to return the generator set to standby service.

- 10. Reinstall the generator set compartment front panel.
- 11. Reinstall the enclosure door.

3.4 Lubrication System

See the service schedule in Section 3.2 for oil change and oil filter replacement intervals. See Figure 3-4 and Figure 3-5 for the oil drain, oil check, oil fill, and oil filter locations. The list of routine service parts in the Introduction of this manual shows the oil filter part number.

3.4.1 Oil Check

The generator set is shipped with oil. Before operating a new generator set check the engine oil in the crankcase. See Figure 3-4 and Figure 3-5. Verify that the oil level is at the F mark on the dipstick. See Section 3.4.2 for engine oil recommendations.

Do not check the oil level when operating the generator set. To obtain the most accurate oil level reading, shut down the generator set and wait several minutes before checking the oil.

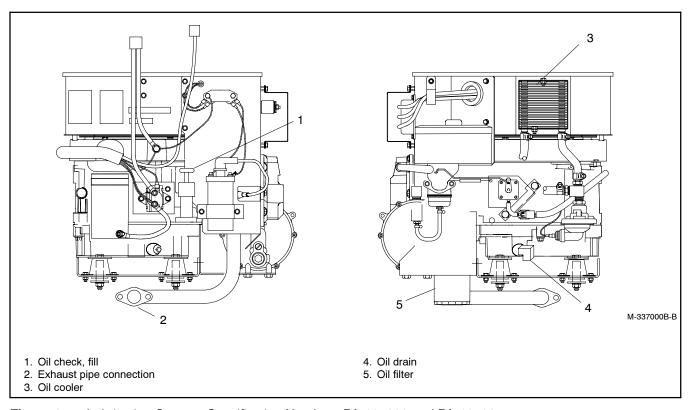


Figure 3-4 Lubrication System, Specification Numbers PA-195023 and PA-195027

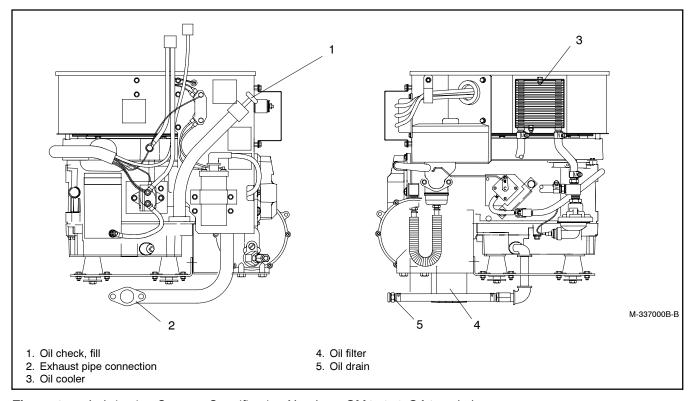


Figure 3-5 Lubrication System, Specification Numbers GM14140-GA1 and above

3.4.2 **Engine Oil Recommendation**

Kohler Co. recommends API (American Petroleum Institute) Service Class SG, SH, or SJ 5W-30 synthetic oil. Synthetic oil oxidizes and thickens less than other oils and leaves fewer deposits on the engine intake valves and pistons.

3.4.3 Oil Change Procedure

Allow the oil to cool to a safe temperature before changing.

- 1. Follow the instructions in Section 3.3 to access the generator set oil drain plug, filter, and fill tube. See Figure 3-4 and Figure 3-5.
- 2. Drain the oil.
 - a. Place an oil collection container below the oil drain and remove the oil drain plug.
 - b. Allow the engine oil to drain completely.
 - c. Replace the oil drain plug.
- 3. Replace the oil filter.
 - a. Place an oil collection container below the oil filter.

- b. Remove the oil filter by rotating counterclockwise with an oil filter wrench.
- c. Clean the gasket sealing surface of the oil filter adapter.
- d. Apply a light coat of clean oil to the rubber seal of the new oil filter.
- e. Install the new oil filter following the instructions provided with the filter. Hand-tighten the filter.

Note: Dispose of all waste materials (engine oil, fuel, filter, etc.) in an environmentally safe manner.

4. Fill with oil.

- a. Remove the oil fill cap and fill the engine to the F mark on the dipstick. The engine oil capacity is 2.0 L (2.1 qt.). See Section 3.4.2 for oil selection.
- b. Reinstall the dipstick and the oil fill cap.
- 5. Slide the generator set back into the cabinet and reconnect the exhaust pipe and wiring harnesses as described in Section 3.3. Do not replace the compartment front panel.

- 6. Check for leaks.
 - a. Start and run the generator set to allow the oil pressure to reach the operating range.
 - b. Check for oil leaks around the oil filter and oil drain plug.
 - Stop the generator set and recheck the oil level.
 Tighten the oil filter to stop any leaks. Add oil to bring the level up to the F mark on the dipstick.
- 7. Replace the generator set compartment front panel.
- 8. Move the generator set master switch to the AUTO position to return the unit to standby service.
- 9. Reinstall the cabinet door.

3.4.4 Low Oil Pressure Shutdown

The low oil pressure shutdown feature protects the engine against internal damage if the oil pressure drops below a safe operating level because of oil pump failure or other malfunction. This shutdown feature does not protect against damage caused by operating with the oil level below the safe range—it is not a low oil level shutdown. Check the oil level regularly and add oil as needed.

3.5 Air Cleaner Element and Precleaner

The engine has a replaceable high-density paper air cleaner element with an oiled-foam precleaner. See Figure 3-6. Refer to the service views in Section 1.4 for the air cleaner location.

Check for a buildup of dirt and debris around the air cleaner system. Keep this area clean.

Note: Operating the engine with loose or damaged air cleaner components could allow unfiltered air into the engine causing premature wear and failure.

Fire. Can cause severe injury or death.

Do not smoke or permit flames or sparks near fuels or the fuel system.

Servicing the air cleaner. A sudden backfire can cause severe injury or death. Do not operate the generator set with the air cleaner removed.

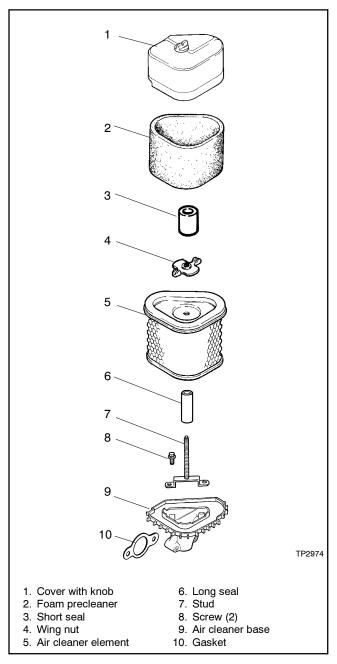


Figure 3-6 Air Cleaner Components

3.5.1 Precleaner Service

Wash and reoil the precleaner at the intervals shown in the service schedule. Wash and reoil the precleaner more often if the generator set operates in extremely dusty or dirty conditions.

 Follow the instructions in Section 3.3 to access the air cleaner.

- 2. Loosen the cover retaining knob and remove the cover. Remove the precleaner from the paper element. Wash the precleaner in warm water with detergent. Rinse the precleaner thoroughly until all traces of detergent are eliminated. Squeeze out excess water (do not wring). Allow the precleaner to air dry.
- 3. Saturate the precleaner with new engine oil. Squeeze out all of the excess oil.
- 4. Reinstall the precleaner over the paper element.
- 5. Reinstall the air cleaner cover. Secure the cover with the cover retaining knob.
- 6. Follow the instructions in Section 3.3 to return the generator set to service.

3.5.2 **Paper Element Service**

Replace the paper element at the intervals specified in the service schedule. Replace the paper element more often if the generator set operates in extremely dusty or dirty conditions. Refer to Maintenance and Service Parts in the Introduction section of this manual for replacement part numbers.

- 1. Follow the instructions in Section 3.3 to access the air cleaner.
- 2. Loosen the cover retaining knob and remove the cover.
- 3. Remove the short seal, wing nut, and paper element with precleaner.
- 4. Remove the precleaner from the paper element.

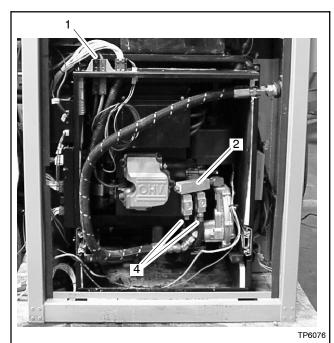
Note: Do not wash the paper element or clean it with pressurized air, as this will damage the element.

- 5. Replace the paper element if it is dirty, bent, or damaged.
- 6. Check the air cleaner base. Make sure it is secure and not bent or damaged. Remove any loose dirt or debris from the air cleaner base. Wipe the base carefully so that no dirt drops into the intake throat.

- 7. Replace all damaged air cleaner components. Check the condition of the rubber seals and replace, if necessary.
- 8. Clean and oil the precleaner as described in Section 3.5.1.
- 9. Reinstall the paper element, precleaner, and wing nut. Replace the short seal and the air cleaner cover. Secure the cover with the cover retaining knob.
- 10. Follow the instructions in Section 3.3 to return the generator set to service.

3.6 Fuel System

Explosive fuel vapors. Can cause severe injury or death.


Use extreme care when handling, storing, and using fuels.

A fuel solenoid valve turns the fuel supply to the fuel pressure regulator on and off. The regulator then reduces fuel pressure for delivery to the fuel metering (fuel mixture adjustment) valve. The fuel flows from the metering valve to the carburetor in a gaseous state. The carburetor mixes the fuel with intake air for consumption by the engine.

Two fuel metering valves allow field-conversion between natural gas and LP vapor. The fuel metering valves are factory-sealed to comply with applicable emission standards and to provide the best possible hot and cold starting. Do not adjust the fuel metering valves.

Have the fuel conversion procedure performed by trained and qualified personnel.

The manufacturer ships the generator set with the fuel system set for natural gas. To convert to LP gas, use the following procedure to move the fuel line from the natural gas inlet port to the LP inlet port in the fuel block (or from the LP inlet to the natural gas inlet to convert from LP to natural gas). See Figure 3-7 for the LP and natural gas fuel connection and fuel block locations. Also see the service views in Section 1.4.

- 1. Battery harness connector
- 2. Fuel block
- 3. LP and natural gas metering valves
- 4. LP and natural gas inlet ports

Figure 3-7 Fuel System Conversion

Fuel Conversion Procedure

- 1. Remove the cabinet front door and the generator compartment front panel to access the fuel system.
- 2. Disconnect the battery at the quick-disconnect plug.
- 3. Turn off the fuel supply by closing the upstream valve outside of the cabinet.
- 4. Remove the hose clamp and fuel line hose from the fuel inlet.
- 5. Remove the hose fitting from the natural gas (or LP) inlet in the fuel metering valve.
- Remove the plug from the LP (or natural gas) metering valve. Clean the plug with a dry cloth or brush, apply fresh pipe sealant, and install it into the natural gas (or LP) inlet.

- Clean the hose fitting with a dry cloth or brush, apply fresh pipe sealant, and install it into the LP (or natural gas) metering valve inlet. Do not adjust the fuel metering valves.
- 8. Slide the hose onto the hose fitting and secure it with the clamp.
- 9. Turn on the fuel supply and check for leaks using a gas leak detector.
- 10. Reconnect the battery harness.
- Install the generator compartment front panel. Set the generator set master switch to AUTO position to return the generator set to standby service.
- 12. Replace the cabinet door.

3.7 Battery

Use a 12-volt battery with a minimum rating of 425 cold cranking amps at -18°C (0°F). The wiring diagrams in Section 8 show the battery connections. The generator set uses a negative ground system. Make sure that the battery is connected correctly and the terminals are tight.

Note: The generator set will not start and circuit board damage may result if the battery is connected in reverse.

Generator sets that are not used regularly require an external battery charger to keep the starting battery fully charged. Observe the battery polarity when connecting the battery charger.

All generator set models use a negative ground with a 12-volt engine electrical system. See Figure 3-8 for the location of the ground connection.

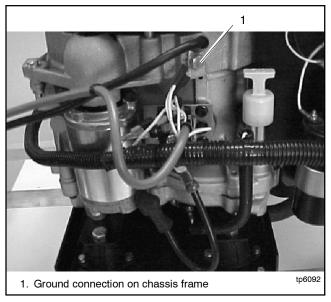


Figure 3-8 Ground Connection

Refer to the cabinet manufacturer's operation and maintenance manual for battery maintenance instructions.

Ignition System 3.8

3.8.1 **Ignition System Description**

The generator set uses a battery-powered coil ignition system. Ignition system components include the ignition module, ignition coil, wiring, and spark plug. See the service views in Section 1.4 for ignition system component locations.

Maintain the spark plug using the instructions in Section 3.8.2. The other ignition system components do not require routine maintenance.

3.8.2 **Spark Plug**

Reset the spark plug gap or replace the plug with a new plug if necessary. Replace the plug at the intervals shown in the service schedule in Figure 3-1.

- 1. Clean the area around the base of the spark plug to keep dirt and debris out of the engine.
- 2. Remove the spark plug and check its condition. Verify that the insulator is a light tan or gray color. Replace the spark plug if the insulator is discolored, the plug is coated with deposits, or the electrodes are pitted or worn.
- 3. Check the spark plug gap using a wire feeler gauge. Adjust the gap to 0.76 mm (0.030 in.) by carefully bending the ground electrode. Figure 3-9 and Figure 3-10.

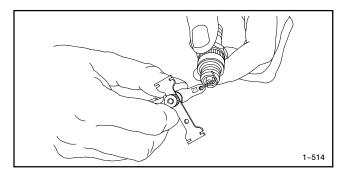


Figure 3-9 Checking the Spark Plug Gap

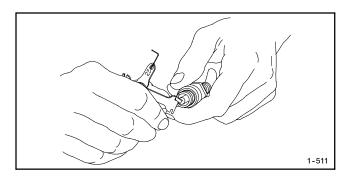


Figure 3-10 Adjusting the Spark Plug Gap

Cooling System 3.9

The air inlet and outlet vents are located near the top of the cabinet. To prevent generator set damage caused by overheating, keep the housing cooling inlets and outlets clean and unobstructed at all times.

Note: Do not block the generator set cooling air inlet or mount other equipment above it. Overheating and severe generator damage may occur.

Figure 3-11 shows the flow of air through and around the generator set. Ducts inside the cabinet, which are not shown in this figure, direct the flow of cooling air. The generator fan draws cooling air through the opening in the back of the cabinet. The air flows into the alternator at the top of the unit and down over the engine. The air then flows up over the exhaust piping and muffler, mixes with the engine exhaust, and discharges at the cabinet outlet in the front of the cabinet.

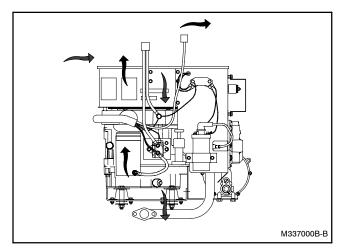


Figure 3-11 Cooling Air Flow

3.10 Electronic Governor

The governor system consists of an electronic governor control and an electromechanical actuator. The system regulates engine speed to achieve specified DC output voltage. The generator supplies a speed signal to the governor control unit in the form of AC electrical pulses. The control unit compares the frequency of these pulses to a preset reference in the speed command and provides a control signal to the actuator. The actuator controls the carburetor and hence the engine speed.

Note: Do not touch or move the throttle linkage between the actuator and carburetor while the engine is running. Manually increasing the engine speed (rpm) can raise the output voltage high enough to damage generator and connected equipment.

3.11 Exhaust System

Remove all combustible materials from the exhaust location. Combustible materials include building materials as well as natural surroundings. Keep dry field grass, foliage, and combustible landscaping material away from the exhaust outlet.

Periodically inspect the exhaust system components (exhaust manifold, exhaust line, flexible exhaust, clamps, silencer, and outlet pipe) for cracks and corrosion.

- Check for corroded or broken metal parts and replace as needed.
- Check for loose, corroded, or missing clamps and hangers. Tighten or replace clamps and/or hangers as needed.
- Check for and remove loose insulation in the exhaust duct.
- Check that the exhaust outlet is clear.

3.12 Alternator Service

Under normal operating conditions, routine alternator maintenance is not required.

30 Section 3 Scheduled Maintenance TP-6482 8/06

Section 4 General Troubleshooting

This section contains generator set troubleshooting and diagnostic information.

Use the following charts to diagnose and correct common problems. First check for simple causes such as a dead engine starting battery or loose connections.

The generator set may be connected to a customersupplied remote control system. Disconnect the generator system from the remote control system at plug P6 and use the generator set master switch to operate the generator set. If the problem persists after P6 is disconnected, use the troubleshooting procedures in this manual to diagnose the problem. If the generator set operates normally when P6 is disconnected, the remote controller may have sent a remote stop command or there may be a problem with the remote control system. Refer to the instructions for the remote control system.

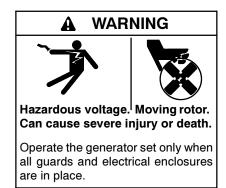
Note: Use an ohmmeter or continuity tester to check for shorts or open leads in the wiring harnesses before replacing the controller circuit board or other system components.

Follow the instructions in Section 3.3 to remove the generator set from the enclosure, if necessary. Service fixtures are required if it is necessary to run the generator set outside of the enclosure. See Section 5.1.

Maintain a record of repairs and adjustments performed on the equipment.

Accidental starting. Can cause severe injury or death.

Disconnect the battery cables before working on the generator set. Remove the negative (-) lead first when disconnecting the battery. Reconnect the negative (-) lead last when reconnecting the battery.


Disabling the generator set. Accidental starting can cause severe injury or death. Before working on the generator set or equipment connected to the set, disable the generator set as follows: (1) Place the generator set start/stop switch in the STOP position. (2) Disconnect the power to the battery charger, if equipped. (3) Remove the battery cables, negative (-) lead first. Reconnect the negative (-) lead last when reconnecting the battery. Follow these precautions to prevent the starting of the generator set by the remote start/stop switch.

Hazardous voltage. Can cause severe injury or death.

Only authorized personnel should open the enclosure.

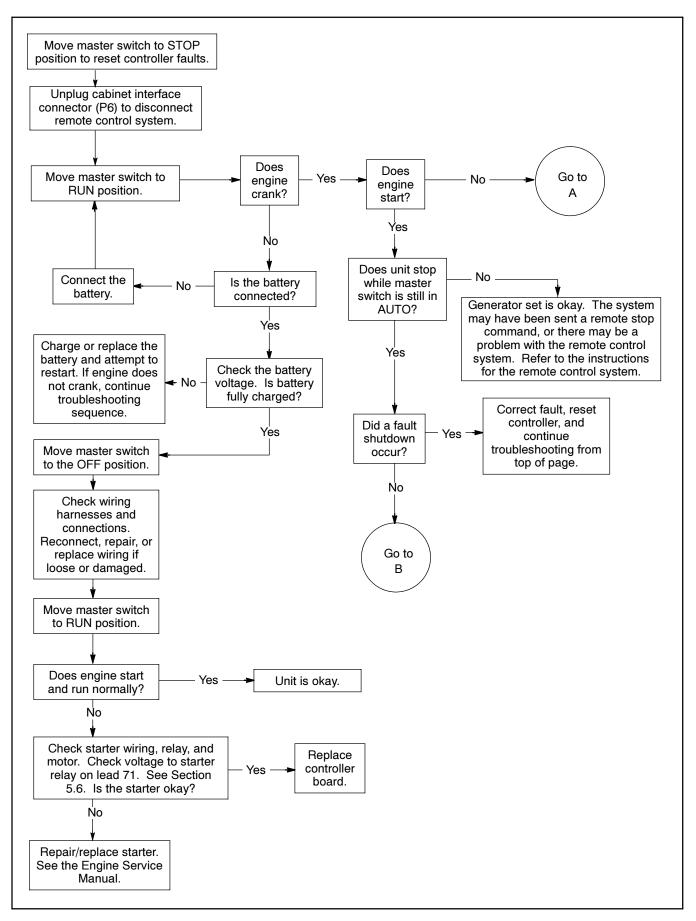
(600 volts and under)

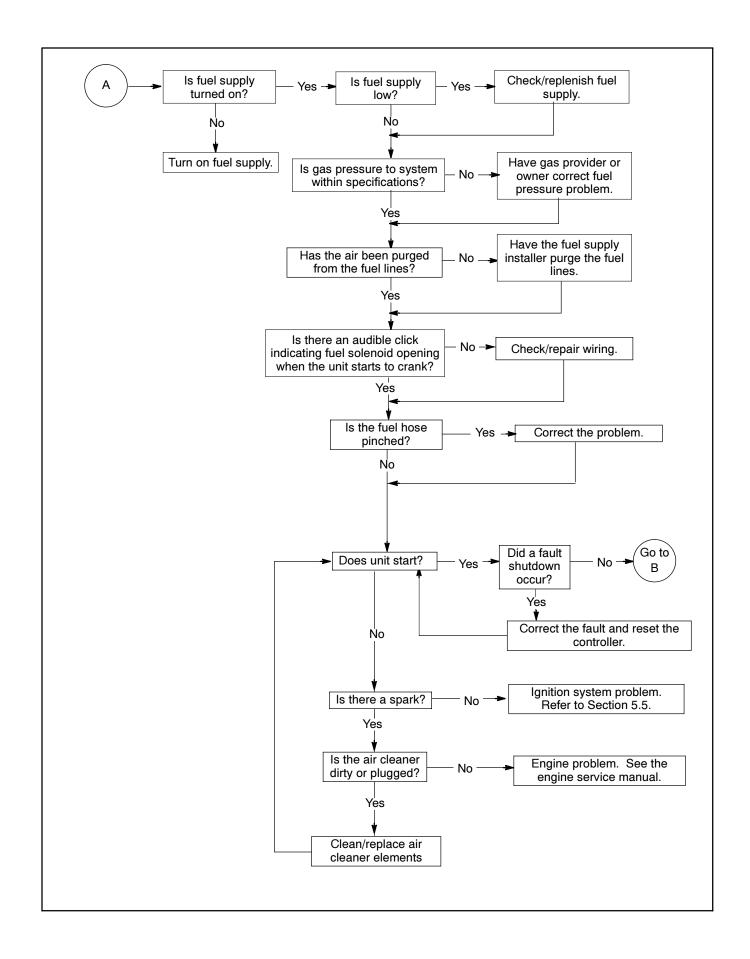
Grounding electrical equipment. Hazardous voltage can cause severe injury or death. Electrocution is possible whenever electricity is present. Open the main circuit breakers of all power sources before servicing the equipment. Configure the installation to electrically ground the generator set and related equipment and electrical circuits to comply with applicable codes and standards. Never contact electrical leads or appliances when standing in water or on wet ground because these conditions increase the risk of electrocution.

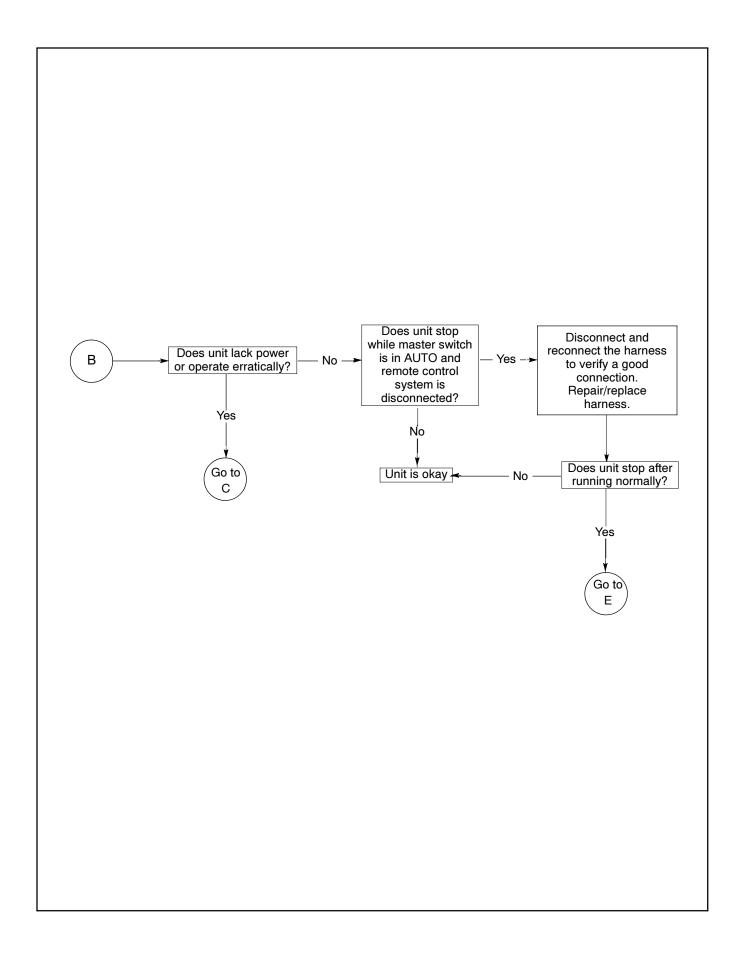
Servicing the exhaust system. Hot parts can cause severe injury or death. Do not touch hot engine parts. The engine and exhaust system components become extremely hot during operation.

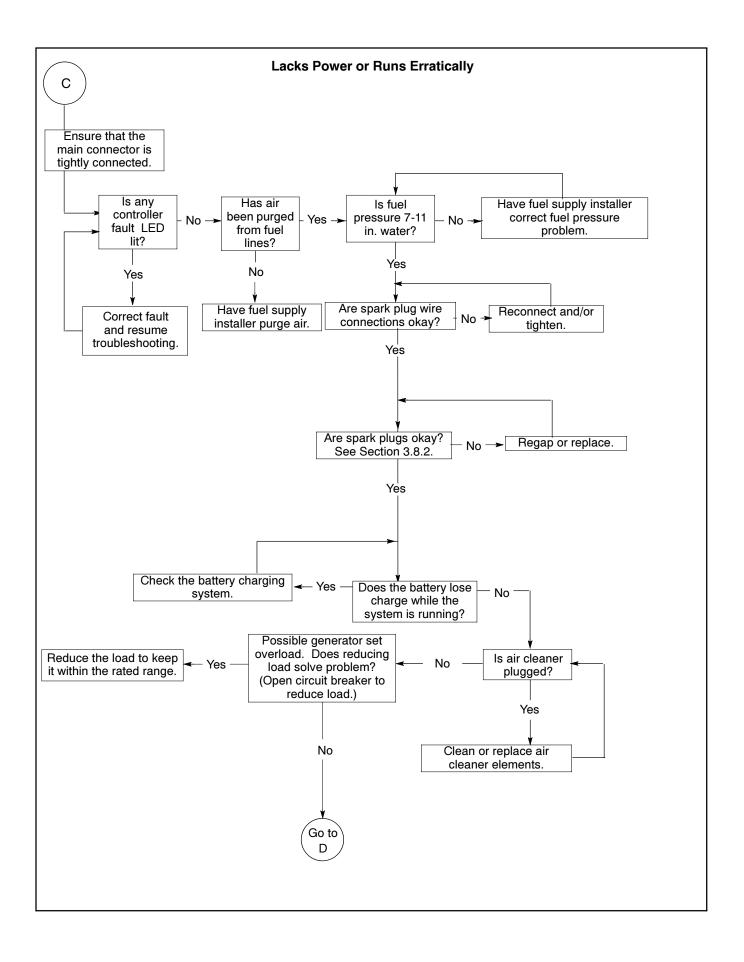
Troubleshooting Chart

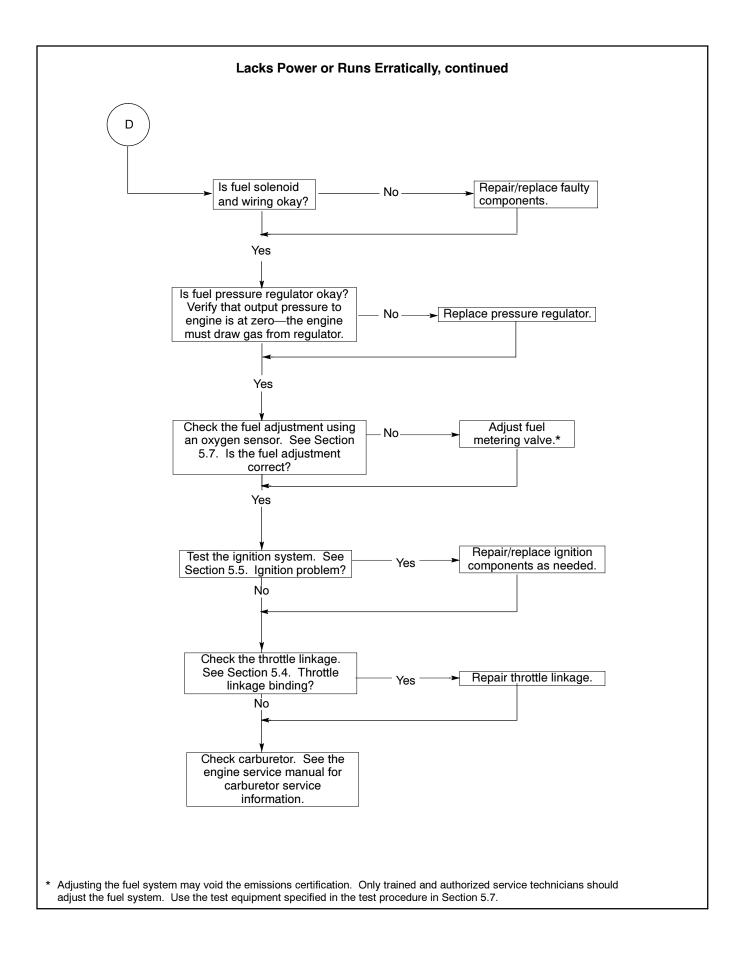
it cools.

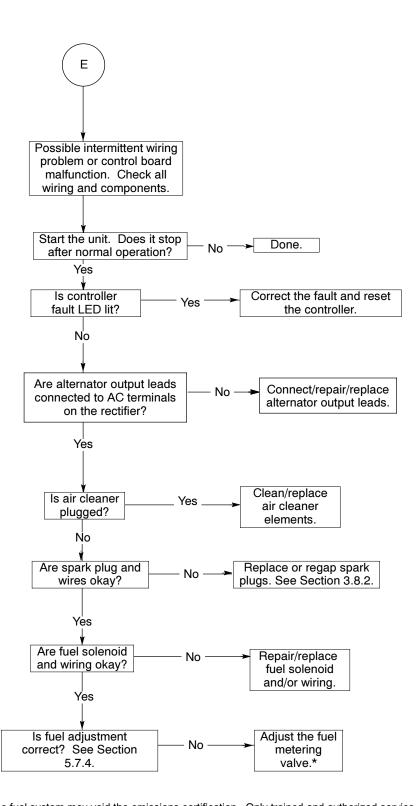

The chart includes a list of common problems, possible causes, and recommended corrective actions.


Problem	Possible Cause	Corrective Action	Reference
Unit does not crank	Weak or dead battery	Recharge or replace battery.	_
	Engine harness connector not fully locked tight	Disconnect and reconnect.	_
	Start switch not in the Auto position	Move switch to Auto.	_
	Remote start cable disconnected	Reconnect start cable.	_
	Generator set controls are not receiving the remote start command	Check remote start cable connections and continuity. Troubleshoot remote control system.	_
	Starter problem	Test starter.	Section 5.6 and the Engine Service Manual, TP-2339-C
	Battery connections loose, dirty or incorrect	Correct, clean, or tighten battery connections.	_
	Fault shutdown	Identify and correct the cause of the fault. Reset the controller	Section 2.3.6
	Controller board problem	Test the board as described in Section 6.5. Connect a spare control board to verify that the board needs to be replaced.	Sections 6.5 and 6.6.
Unit cranks but does not start	Air cleaner clogged	Clean or replace air cleaner.	Section 3.5
	Fuel problem	Check fuel supply and replenish if necessary.	_
		Verify that the fuel valve is open.	_
		Check that the fuel regulator opens.	Section 5.7.1
		Check that the throttle linkage moves freely and opens at start.	Section 5.4
		Check the fuel adjustment (oxygen sensor required for this test).	Section 5.7.4
		Check for the correct fuel and fuel block connection.	Section 5.7
	Choke spring disconnected (if equipped with choke assembly)	Connect the choke spring and check that it holds the choke open. (Many units have no choke and do not require the spring.)	Section 5.7.5


Troubleshooting Chart (continued)


Problem	Possible Cause	Corrective Action	Reference
Unit cranks but does not start, continued	Faulty spark plug	Replace or regap spark plugs.	Section 3.8.2
	Loose spark plug wire connection	Reconnect and/or tighten spark plug wire.	_
	Ignition system problem	Test ignition system. Replace ignition module if faulty.	Sections 6.5.4 and 5.5
	Weak or dead battery	Recharge or replace battery.	Section 3.7
Unit starts hard	Air cleaner clogged	Clean or replace air cleaner element.	Section 3.5
	Faulty spark plug	Replace or regap spark plugs.	Section 3.8.2
	Weak or intermittent ignition module(s)	Test the ignition system and replace faulty components.	Section 5.5
Unit stops suddenly	Air cleaner clogged	Clean or replace air cleaner element.	Section 3.5
	Faulty spark plug	Replace or regap spark plugs.	Section 3.8.2
	Fuel starvation	Replenish fuel.	_
	Engine harness connector not fully locked tight	Disconnect and reconnect.	_
	Fault shutdown	Check controller LEDs. Correct fault and reset controller. Test shutdown operation.	Sections 6.2.3, 2.3.6 and 6.4
	Faulty shutdown switch	Test switches and replace if necessary.	Section 5.9
Unit lacks power or operates erratically	Engine harness connector not fully locked tight	Disconnect and reconnect.	_
	Air cleaner clogged	Clean or replace air cleaner element.	Section 3.5
	Insufficient cooling	Inspect and clean cooling system.	Section 3.9
	Engine overload	Reduce load on generator set.	_
	Faulty spark plug	Replace or regap spark plugs.	Section 3.8.2
	Fuel supply problem	Check valves and fuel pressure.	Section 5.7
	Governor system problem	Check governor and throttle linkage.	Section 5.4
Unit does not supply load	Fuel supply problem	Check for the correct fuel and fuel block connection.	Section 5.7
	Excessive load	Check that load does not exceed rating, 3.5 or 5 kW.	_
	Throttle linkage binding	Check that throttle linkage is free to move and open while engine is running.	Section 5.4
	Undervoltage	Check that voltage with no load is 52 volts (48 V models) or 39 volts (36 V models).	Section 5.3
Engine noise	Hydraulic lifter leakdown	Run unit 5-10 minutes under load.	_
Unit overheats	Air openings clogged	Clean intake and outlet openings.	Section 3.9
	Air cleaner clogged	Clean or replace air cleaner element.	Section 3.5
	Overload	Verify that load is within the specified range. Reduce load.	Section 1.3


4.2 Generator Set/Controller System Troubleshooting Flowcharts



Unit Stops After Normal Operation

* Adjusting the fuel system may void the emissions certification. Only trained and authorized service technicians should adjust the fuel system. Use the test equipment specified in the test procedure in Section 5.7.4.

Notes

Section 5 Component Testing and Adjustment

Use the troubleshooting procedures in Section 4 and the wiring diagrams in Section 8 to diagnose problems with the generator set operation. For controller operation and test, refer to Section 6 of this manual and to the remote control manual. Use the procedures in this section to check generator components for proper operation and adjust components when necessary. See the service views in Section 1.4 for component locations.

Hazardous voltage. Will cause severe injury or death.

Only authorized personnel should open the enclosure.

Operating Generator Set 5.1 **Outside Enclosure**

CAUTION

Hazardous noise. Can cause hearing loss.

Never operate the generator set without a muffler or with a faulty exhaust system.

Operate the generator set only when all guards and electrical enclosures are in place.

Fire.

Can cause severe injury or death.

Do not smoke or permit flames or sparks near fuels or the fuel system.

Servicing the air cleaner. A sudden backfire can cause severe injury or death. Do not operate the generator set with the air cleaner removed.

The generator set is mounted on rails inside the enclosure. Follow the instructions in Section 3.3 to open the enclosure, disconnect the generator set, and slide it out for removal or service.

5.1.1 Test Equipment

The following test equipment, available from Kohler Co., is required to run the generator set outside the enclosure:

- Cover plate
- Exhaust pipe extension with test port
- Oxygen sensor (for testing the fuel system)
- Silencer
- Control board
- Extended wiring harness

See Maintenance and Service Parts in the Introduction section of this manual for the part numbers for the test equipment.

Before running the generator set outside the enclosure:

- Set the generator set on the fixture, aligning the generator set mounting holes with the four pins on the fixture.
- Place the cover over the top of the generator to prevent contact with rotating parts. Tie the cover to the generator set's lifting eye and one of the bolts that secure the rectifier cover.

Attach the exhaust pipe extension to the silencer.
 Verify that the test port is plugged or install the oxygen sensor in the port if needed for fuel adjustments. See Figure 5-1.

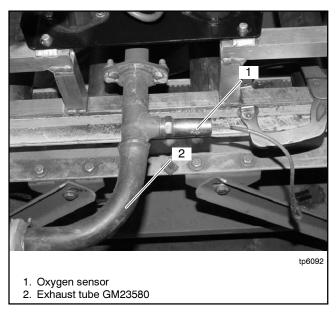


Figure 5-1 Exhaust Tube and Oxygen Sensor

- Connect a silencer to the output end of the exhaust pipe extension.
- Connect the engine/controls interface connector P4 to the control board. Use the extension harness if the extra length is needed. See Figure 5-2.

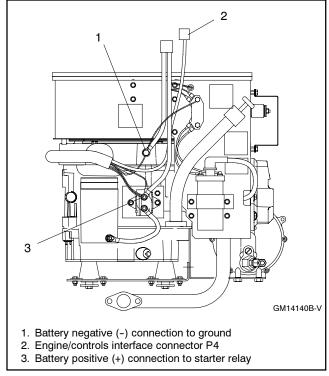


Figure 5-2 Connections

 Connect a starting battery to the terminals shown in Figure 5-2. Connect the negative lead last.

5.1.2 Lifting Generator Set

The generator set weighs approximately 68 kg (150 lb.). Use adequately rated equipment to lift the generator set. The generator set has two lifting eyes. Connect lifting hooks to the two lifting eyes and use a strap to support the other end of the generator set. Thread the strap under the wiring harnesses and over the hoses as shown in Figure 5-3 and Figure 5-4, taking care not to damage the throttle linkage.

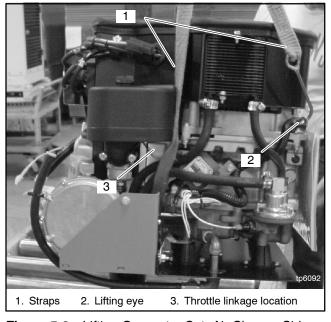


Figure 5-3 Lifting Generator Set, Air Cleaner Side

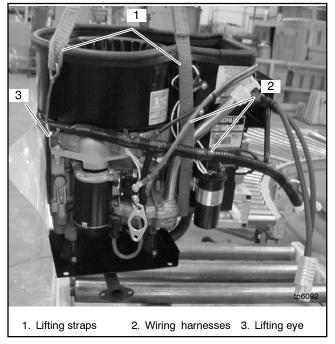


Figure 5-4 Lifting Generator Set, Starter Side

5.2 Circuit Protection

A fuse on the output (DC) side of the voltage rectifier interrupts the generator output in the event of a 50% overload or a short circuit in the wiring between the generator and the load. See Figure 5-5. Replace the fuse if it blows. See Maintenance and Service Parts in the Introduction of this manual for the fuse part number.

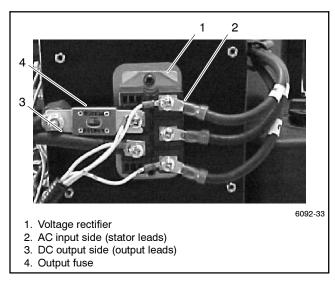


Figure 5-5 Voltage Rectifier and Fuse

Voltage Rectifier 5.3

The voltage rectifier converts AC voltage from the alternator into DC voltage. Figure 5-6 shows the rectifier schematic.

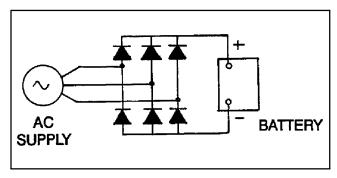


Figure 5-6 Rectifier Schematic

If there is no DC voltage at the output connector, check the fuse (see Figure 5-5). Test for output at the rectifier to check the output leads. Check for AC voltage into the rectifier. If there is AC voltage coming into the rectifier, but no DC output, replace the rectifier. The voltage rectifier has no adjustments.

The microprocessor controller monitors the DC output voltage. To verify accurate voltage control, increase and decrease loads while measuring DC output voltage at the output connector. The output voltage should remain fairly steady at the rated voltage as the engine speed increases or decreases in response to load changes.

If voltage falls below the rated value as load increases or decreases, check for the following problems:

- Inadequate fuel supply
- Fuel solenoid malfunction
- Fuel metering valve malfunction
- Stepper motor/throttle linkage binding

Electronic Governor

The system uses a variable-speed generator to maintain the rated output voltage with varying loads. The governor system regulates the engine speed with changing loads.

The governor system consists of an electronic governor control and an electromechanical actuator. Leads AC1 and AC2 provide a speed (frequency) signal from the AC side of the voltage rectifier (terminals E and C) to the control board. The control board signals the actuator. which controls the throttle and hence the engine speed, to maintain the generator nominal output voltage.

5.4.1 **Governor Checks**

The factory-set electronic governor does not normally require adjustment. If the engine operates erratically, check the following connections and conditions before adjusting the governor:

- Check the electrical connections and wire harnesses for clean, tight connections.
- Check the speed-sensing connections at rectifier terminals C and E. Poor connections may cause an erratic signal, which could cause the unit to shut down.
- Check the electrical ground connections.
- Check the battery connections. Verify that the connections are clean and tight.
- Check for a good positive 12-volt DC supply. Also check if the positive voltage supply is unstable or

below 8 volts DC making the control unit function erratically.

- Check for stepper motor/throttle shaft linkage binding or wear. The linkage arm and lever arms must not bind or rub against other components while moving.
- Verify that the governor stepper motor operates with steady and smooth movement. If the movement of the stepper motor is erratic or large changes in movement occur, check for shaft misalignment, linkage binding, or loose or broken wiring or plug connections.
- If the throttle linkage binds or otherwise does not operate smoothly, check the bushing shown in Figure 5-7 and Figure 5-8. The bushing has a longer slot on one side that must be oriented as shown in Figure 5-7.

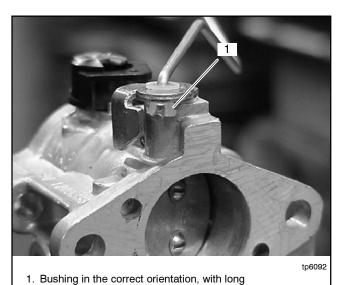


Figure 5-7 Correct Bushing Rotation

slot facing the viewer

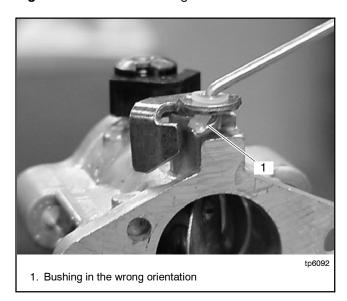


Figure 5-8 Incorrect Bushing Rotation

 Check carburetor for dirt, grime, or misadjustment. Also, check the idle-adjustment screw. The screw should not prevent the throttle plate from completely closing. Also, check the throttle linkage for any binding, dirt, damage, etc.

Note: Often hunting/surging problems thought to be caused by the governor are actually linked to carburetor adjustment. Check the carburetor adjustment before adjusting the governor.

The fuel shutoff solenoid deenergizes and generator set shuts down with the following electronic governor faults:

- Loss of pickup while running (throttle moves to closed position)
- Engine overspeed
- · Break of fuel shutoff solenoid lead
- Loss of DC power to governor assembly
- Break of stepper motor leads (erratic performance)
- Actuator linkage failure (erratic performance)

If none of the above conditions exist, proceed to Section 5.4.2, Stepper Motor Check.

5.4.2 Stepper Motor Check

Use the following procedure to test the operation of the governor stepper motor.

Stepper Motor Test Procedure

- 1. Stop the generator set and disconnect the battery.
- 2. Manually move the governor linkage fully counterclockwise (open throttle). See Figure 5-9.

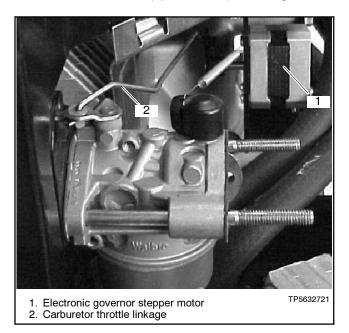


Figure 5-9 Stepper Motor Throttle Linkage

3. Reconnect the battery. The stepper motor should move clockwise to the closed-throttle position with a noticeable clicking sound. If the stepper motor does not stay in the closed-throttle position, replace the stepper motor.

Only two stepper motor leads of each coil group are utilized (BLACK-YELLOW and RED-WHITE). The resistance per phase is 38.5 ohms. See Figure 5-10.

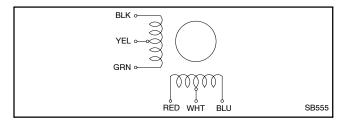


Figure 5-10 Actuator Coil Group

5.5 Ignition System

The breakerless ignition system includes a battery ignition coil, electronic ignition module, and an ignition trigger coil. See Figure 5-11. The ignition module electronically interrupts battery voltage to the primary coil winding, inducing high voltage in the secondary winding and producing the spark at the spark plug.

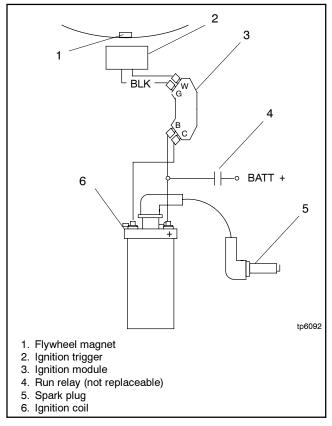


Figure 5-11 Ignition System

Check the continuity of the spark plug lead. Check the condition of the lead insulation and spark plug boot. Refer to Section 3.8.2 for additional spark plug information.

Figure 5-12 shows some ignition specifications.

Item	Specification
Trigger gap	1.02 mm (0.040 in.)
Trigger coil resistance: Part no. GM17721 Part no. GM23592	190-205 ohms 320-360 ohms
Timing	28° BTDC
Spark plug gap	0.76 mm (0.030 in.)

Figure 5-12 Ignition System Specifications

5.5.1 **Ignition Trigger**

Two types of trigger coils are used. One type, part number GM17721, has a resistor connected to the trigger coil cable. See Figure 5-13. Use trigger coil GM17721 only with ignition module 278903. The other coil, GM23592, has no resistor in the wiring. The ignition module part number is stamped on the back of the module. Use coil GM23592 only with ignition module GM23591, which has an internal resistor. Section 5.5.2 for more information on ignition modules.

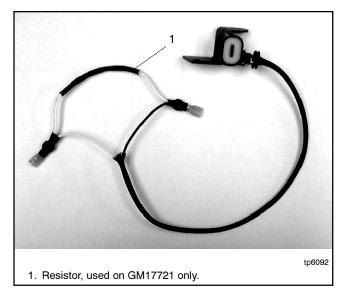


Figure 5-13 Trigger Coil GM17721 (use with ignition module 278903)

Use an ohmmeter to check trigger coil resistance and compare the measured value to resistances shown in Figure 5-12. An open coil will produce a reading of 470 ohms. If trigger coil is open or shorted, replace it.

Use a feeler gauge to check gap between ignition trigger coil and flywheel. See Figure 5-14 and Figure 5-15. Verify that the gap is set to 1.02 mm (0.040 in.).

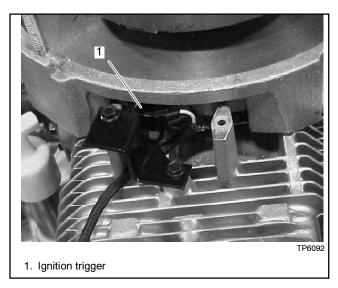


Figure 5-14 Ignition Trigger

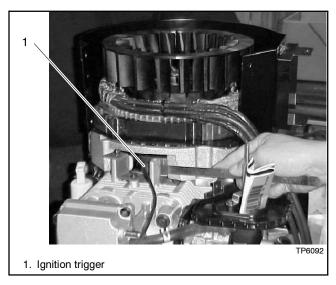


Figure 5-15 Ignition Trigger Adjustment

5.5.2 **Ignition Module**

Use an ohmmeter to measure the resistances across the ignition module terminals. See Figure 5-16 and Figure 5-17. The ignition module part number is stamped on the back of the module. If the measured resistances do not match those shown in Figure 5-17, replace the module.

Note: The ignition module must be matched with the appropriate trigger coil. See Section 5.5.1 for information.



Figure 5-16 Ignition Components

Terminals	Ohmmeter Indication				
Part Number 278903					
W-G	10 kOhms				
B-Ground	850 ohms				
C-Ground	Diode check: Open circuit in one direction, approximately 2.7 mOhms with the test leads reversed.				
Part Numbe	r GM23591				
W-G	450 Ohms				
B-Ground	850 ohms				
C-Ground	Diode check: Open circuit in one direction, approximately 2.7 mOhms with the test leads reversed.				

Figure 5-17 Ignition Module Resistances

Apply a thin coating of thermal compound between the mounting pad and the module to ensure good heat transfer. Connect the ground wire to the system ground.

Ignition Coil 5.5.3

Use an ohmmeter or a test lamp to check the ignition coil primary winding. Measure the resistance across the positive (+) and negative (-) terminals and from one terminal to ground. If the test shows that the winding is open or grounded, replace the ignition coil.

Disconnect the high tension lead from the engine spark plug and connect it to a test spark plug. Disconnect lead C from the ignition module. Move the generator set master switch to START. Ground lead C and watch the test plug for sparks. If no sparks are produced the ignition coil secondary winding is faulty. Replace the ignition coil.

5.6 Starter

Check the starter if the generator set engine does not crank.

Check the battery voltage and connections before proceeding. Check for a locked rotor or other fault condition that may have shut down the unit. Correct the fault condition and reset the controller to clear a fault shutdown.

Note: Always check the wiring and connections before replacing components.

The crank cycle attempts to start three times, cranking for 20 seconds and then resting for 5 seconds between attempts. LED 7 on the control board lights to indicate that cranking is energized. LED 5 indicates an overcrank shutdown; reset the controller if LED 5 lights during these tests. See Figure 5-18.

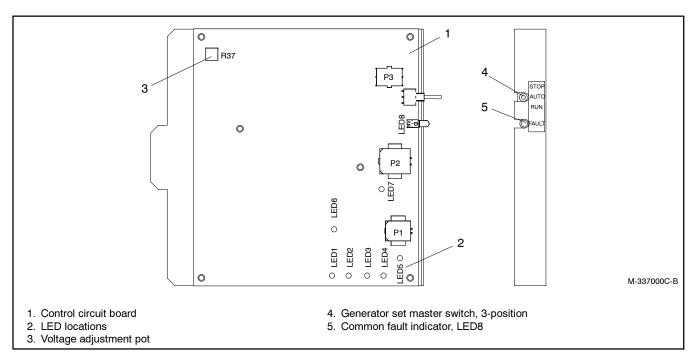


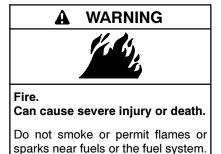
Figure 5-18 Controller Board

Move the generator set master switch to Start and check for 12 VDC to the starter relay on lead 71 during the crank attempt. See Figure 5-19. If there is no voltage to the starter during the crank cycle, check the connections. Then check for voltage from the controller at J4-1 and P2-1 (see the wiring diagram, Section 8). If there is no voltage at P2-1 during cranking, replace the control board.

Figure 5-19 Starter Components

To test the starter relay, check for 12 VDC to the starter motor during the crank attempt. If there is voltage to the relay but not to the starter motor, check the connection between the relay and the starter motor. connection is good, replace the relay.

Generator sets with serial numbers above 2094977 use a waterproof starter solenoid. Use service kit GM40989 to replace the starter solenoid on earlier units. See TT-1437.


If there is voltage to the starter motor but the starter motor does not crank the engine, refer to the Engine Service Manual for starter service information. The generator set engine uses an inertia-drive electric starter.

5.7 Fuel System

Explosive fuel vapors. Can cause severe injury or death.

Use extreme care when handling, storing, and using fuels.

Combustible materials. A fire can cause severe injury or death. Generator set engine fuels and fuel vapors are flammable and explosive. Handle these materials carefully to minimize the risk of fire or explosion. Equip the compartment or nearby area with a fully charged fire extinguisher. Select a fire extinguisher rated ABC or BC for electrical fires or as recommended by the local fire code or an authorized agency. Train all personnel on fire extinguisher operation and fire prevention procedures.

5.7.1 **Fuel Regulators**

The typical gaseous fuel system uses two regulators. The primary regulator reduces the line pressure to an allowable inlet pressure for the secondary regulator. The fuel supplier provides and maintains the primary regulator. The secondary regulator is factory-installed on the generator set and is designed for a maximum inlet pressure of 2.7 kPa (6 oz./in.2) or 280 mm (11 in. water column).

Do not try to adjust the fuel pressure, fuel mixture, or engine speed using the fuel lock-off. See Figure 5-20 for the location of the fuel lockoff. The fuel lock-off prevents fuel flow when the engine is not operating.

Checking the Fuel Pressure

Use a gauge or manometer to check the fuel pressure at the secondary regulator inlet. See Figure 5-20. Measure the fuel pressure with the generator set running at full load. The fuel pressure should be 178-280 mm (7-11 in. water column) or 1.7-2.7 kPa (4-6 oz./in.2). Contact the fuel supplier if the inlet pressure is not within the specified range.

Note: Do not attempt to adjust the fuel mixture or engine speed by adjusting the regulators.

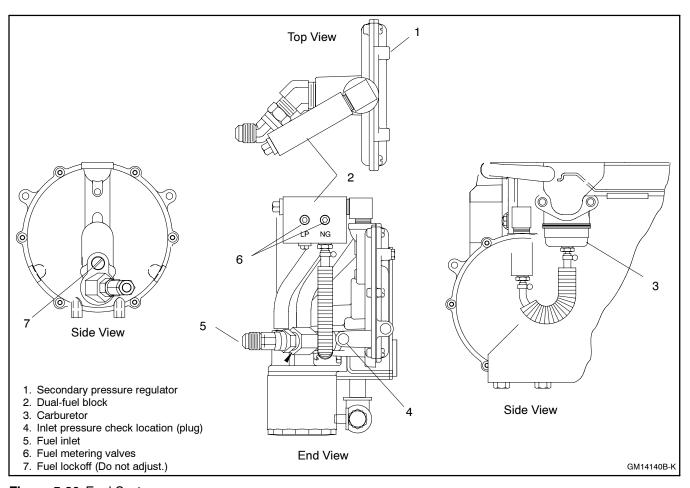


Figure 5-20 Fuel System

Fuel Solenoid Valve 5.7.2

The fuel solenoid valve is located on the outside of the enclosure. It is a 12 VDC valve energized by lead 70 when the generator set controller is in the crank or the run mode. The fuel solenoid valve is supplied with the enclosure.

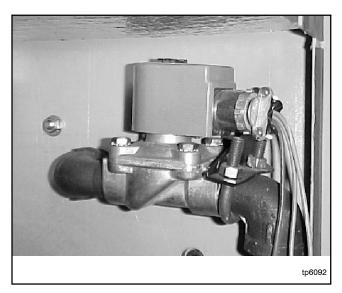


Figure 5-21 Fuel Solenoid Valve

5.7.3 **Fuel Conversion**

Two fuel metering valves allow field-conversion between natural gas and LP vapor. Have the fuel conversion procedure performed by trained and qualified personnel.

Note: Do not adjust the fuel metering valves. The fuel metering valves are factory-sealed to comply with applicable emission standards and to provide the best possible hot and cold starting.

The manufacturer ships the generator set with the fuel system set for natural gas. To convert to LP gas, use the following procedure to move the fuel line from the natural gas inlet port to the inlet port in the LP fuel metering valve (or from the LP inlet to the natural gas inlet to convert from LP to natural gas). See Figure 5-22 for the LP and natural gas fuel connection and fuel block locations. Also see the service views in Section 1.4.

Fuel Conversion Procedure

- 1. Remove the enclosure front door and the generator compartment front panel to access the fuel system.
- 2. Move the generator set master switch to the STOP position.

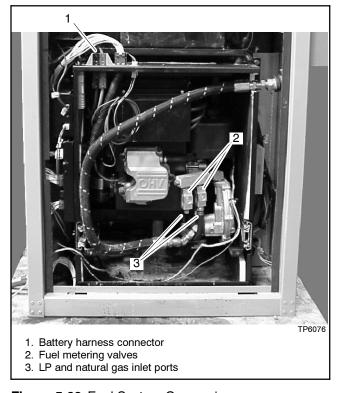


Figure 5-22 Fuel System Conversion

- 3. Disconnect the battery at the quick-disconnect plug.
- 4. Turn off the fuel supply by closing the upstream valve outside of the enclosure.
- 5. Remove the hose clamp and fuel line hose from the fitting in the fuel metering valve.
- 6. Remove the hose fitting from the natural gas (or LP) inlet in the fuel metering valve.
- 7. Remove the plug from the LP (or natural gas) inlet. Clean the plug with a dry cloth or brush, apply fresh pipe sealant, and install it into the natural gas (or LP) inlet.

- 8. Clean the hose fitting with a dry cloth or brush, apply fresh pipe sealant, and install it into the LP (or natural gas) inlet.
- 9. Slide the hose onto the hose fitting and secure it with the clamp.
- 10. Turn on the fuel supply and check for leaks using a gas leak detector.
- 11. Reconnect the battery harness.
- 12. Install the generator compartment front panel. Set the generator set master switch to the AUTO or center position to return the generator set to standby service.
- 13. Replace the enclosure door.

5.7.4 **Fuel System Recalibration**

The fuel metering valves are factory-set to meet emissions requirements and sealed to discourage field adjustments. If the fuel system requires recalibration, only trained, authorized service technicians may adjust the fuel metering valves. Always use an oxygen sensor and an exhaust tube with an oxygen sensor port, available from the generator set manufacturer, when adjusting the fuel metering valves.

Note: Changing the fuel system adjustments may void the emissions certification.

Fuel system recalibration requires the following equipment, which is available from Kohler Co.:

- Oxygen sensor
- Test exhaust pipe with oxygen sensor port

See Maintenance and Service Parts in the Introduction section of this manual for the equipment part numbers.

Follow the instructions in Section 5.1 to remove the generator set and operate outside the enclosure.

Fuel System Recalibration Procedure

- 1. Run the generator set at full load and check the oxygen sensor reading. At full load, the oxygen sensor output voltage should be between 0.75 VDC and 0.85 VDC.
- 2. If adjustment is required, remove seal on the fuel metering valve and adjust the valve to obtain an oxygen sensor reading between 0.75 VDC and 0.85 VDC. See Figure 5-20 for the fuel metering valve location.
- 3. Reseal the valve after adjustment.

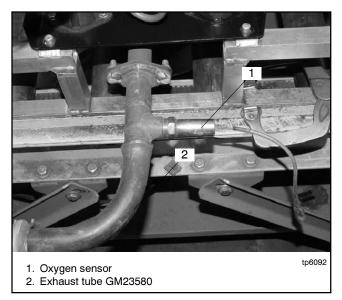


Figure 5-23 Exhaust Tube and Oxygen Sensor

5.7.5 Choke

Some engines are equipped with a choke, which is held open at all times by the choke spring shown in Figure 5-24.

If the engine is equipped with a choke, identified by the knob shown in Figure 5-24, check that the spring is attached and holding the choke open.

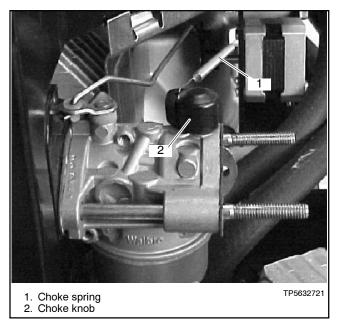


Figure 5-24 Choke Assembly (not included on all engines)

Generator sets built after June, 2001, do not have a choke assembly and, therefore, do not require the spring. Choke solenoid service kit GM42302 can be installed to improve engine starting in cold weather. See TT-1422 for more information.

5.8 Alternator

The alternator is connected directly to the engine. The alternator uses a permanent magnet rotor and a 3-lead 3-phase stator. See Figure 5-25.

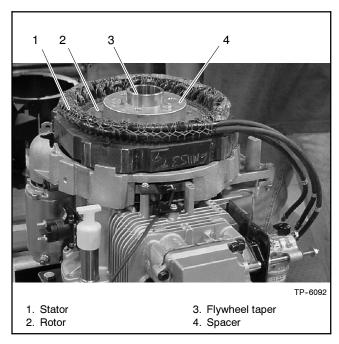


Figure 5-25 Alternator (shroud and fan removed to show components)

5.8.1 **Stator**

The stator contains coils of wire laid in a laminated steel frame. The three stator leads are connected together in a wye configuration. See Figure 5-26.

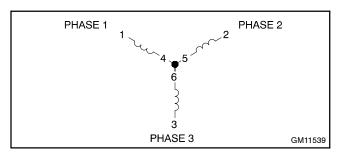


Figure 5-26 Stator Windings

The stator leads supply voltage to the voltage rectifier and the speed-sensing circuit. Before testing, inspect the stator for heat discoloration, visible damage to housing lead wires, exposed coil windings, or exposed areas of frame laminations. Use an ohmmeter to check the continuity of the stator windings using the following procedure.

Stator Test Procedure

- 1. Disconnect the power to the battery charger, if equipped.
- 2. Disconnect the generator set engine starting battery, negative (-) lead first.
- 3. Disconnect output connector P8 from the load. See Figure 5-27.
- 4. Disconnect the stator leads from the voltage rectifier. See Figure 5-27.

Note: Disconnect all stator leads from the voltage rectifier before performing the test.

5. Set the ohmmeter on R x 1 scale. Touch the red meter lead to the black lead and adjust the ohmmeter to show zero ohms.

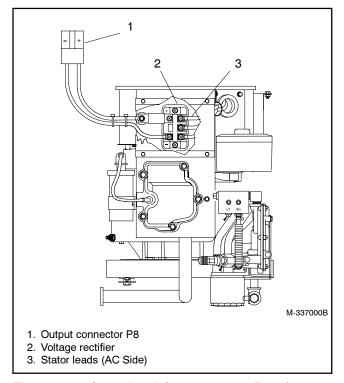


Figure 5-27 Stator Lead Connections to Rectifier

6. Check the cold resistance of the stator windings by connecting the meter leads to stator leads 1 and 2, 1 and 3, and 2 and 3. See Figure 5-28 for stator winding resistance values. Replace the stator if any of the resistance checks reveal an open winding. If the resistance test is not conclusive, perform a megohmmeter test on the stator as described in step 7.

Note: Most ohmmeters do not measure very small resistance values accurately. Check for continuity of the windings with no shorts to ground. The stator is functional if the resistance reading (continuity) is low and there is no evidence (heat discoloration) of shorted windings.

Generator Set Voltage Rating, VDC	Stator Resistance, Ohms
36	0.014
48	0.024

Figure 5-28 Stator Resistance

- 7. If the resistance test in the previous step is not conclusive, perform a megohmmeter test to determine whether the stator is shorted to ground.
 - a. Use a megohmmeter to apply 500 volts DC to any stator lead and the stator's frame. Follow the instructions of the megohmmeter's manufacturer when performing this test. A readina of approximately 500 kOhms (1/2 MOhm) or higher indicates that the stator is in good condition. A reading of less than approximately 500 kOhms (1/2 MOhm) indicates deterioration of the winding insulation and possible current flow to ground.
 - b. If the megohmmeter reading is less than 500 kOhms, replace the stator.

5.8.2 Rotor

The rotor uses permanent magnets. There are no tests or field adjustments for the rotor.

5.9 Fault Shutdown Switches

Check the continuity of the high engine temperature (HET) and low oil pressure (LOP) switches. Check for loose connections and open or short circuits in the connecting wires before replacing the switches.

High Engine Temperature (HET) Switch

The HET switch is normally open. Shut down the generator set and allow the engine to cool. Use an ohmmeter to measure the resistance from pin P4-12 to ground. The ohmmeter should indicate an open circuit. Any other reading indicates a short; replace the HET switch.

Low Oil Pressure (LOP) Switch

The normally closed LOP switch opens when the engine oil pressure reaches the normal operating level and closes if the oil pressure drops below a preset minimum. Use an ohmmeter to check the continuity between pin P4-13 and ground. Verify that the switch is closed while the engine is stopped. Start the generator set and check that the switch opens approximately 5 seconds later. If the switch does not open after the engine reaches normal operating speed, check the oil level and test for leaks in the lubrication system before replacing the LOP switch.

Notes

Section 6 Controller Operation and Test

This section describes troubleshooting procedures for the generator set control board, shown in Figure 6-1. Refer to the operation manual for operating instructions. Refer to the remote controller manufacturer's instructions for troubleshooting and servicing remote controllers connected to the generator set.

Control circuit boards GM11783 and GM14243 are not However, control circuit board interchangeable. GM17820 can be used to replace either GM11783 or GM14243.

6.1 Sequence of Operation

The following sections describe the controller sequence of operation during generator start, run, stop, and fault shutdown modes. Use this as a starting point for controller fault identification. Use the LEDs on the controller circuit board to assist in the troubleshooting process. Refer to the wiring diagrams in Section 8 to assist in the troubleshooting procedure.

6.1.1 Starting Sequence

Placing the generator set master switch in the RUN position starts the generator set locally.

generator set master switch in the AUTO position, momentarily closing contacts P6-5 and P6-6 starts the generator set remotely.

The crank relay energizes, activating the starter motor, SM. The hourmeter, ignition module, coil, and gas valve receive power.

When the engine comes up to speed, the low oil pressure switch contacts open.

6.1.2 Running Sequence

Leads AC1 and AC2 from the AC side of the voltage rectifier provide speed sensing signals to the control board.

Note: The generator set shuts down if the controller does not obtain AC output within 1 second after engine start (locked rotor shutdown).

6.1.3 Stopping Sequence

Moving the generator set master switch to the stop position or closing a remote contact between pins P6-6 and P6-7 (and opening P6-5 and P6-6) deenergizes the run relay and stops the generator set.

Figure 6-1 Controller Board

6.2 Control Connections

Wiring harnesses connect the generator set control board to the system remote controls and the engine. Figure 6-2 shows the wiring harness connections to the control board. See the wiring diagrams in Section 8 for pinouts and connection details. Figure 6-3 defines the abbreviations used in the wiring diagrams.

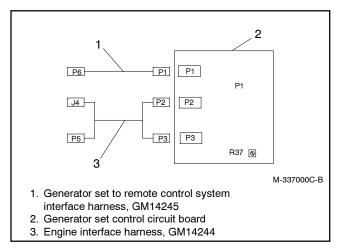


Figure 6-2 Generator Set Control Connections

Abbreviation	Definition
N	Ground
OVC	Overcrank
N/C	Not connected
STT	Start
LOP	Low oil pressure
STP	Stop
OVT	Overtemperature
OVS	Overspeed
DCP	DC output sensing
DCN	DC output sensing
AC1	AC speed sensing
AC2	AC speed sensing
M1	Throttle control
M2	Throttle control
МЗ	Throttle control
M4	Throttle control
Р	Battery
70	Run
71	Crank

Figure 6-3 Pin Abbreviations

6.2.1 Generator Set Master Switch

Some models use a 3-position generator set master switch. Set the switch to the AUTO position for remote operation. Set both the generator set master switch and the remote switch to the STOP or OFF position and disconnect the engine starting battery before servicing the generator set.

Other models use a momentary start/stop generator set switch that returns to the center position when released. Be sure to set the remote switch to the OFF position before servicing the generator set. Hold the generator set master switch in the STOP position while disconnecting the starting battery.

6.2.2 **Remote Start/Stop Connections**

For remote operation, connect a three-wire remote start/stop switch to P6 of the interface harness. To start, open a contact between pins 6 and 7 and close a contact between pins 5 and 6 of connector P6 (see the wiring diagrams). To stop, close the contact between pins 6 and 7 and open the contact between pins 5 and 6.

6.2.3 Status Indicators

Eight LEDs on the generator set control board indicate the system status conditions and fault shutdowns listed in Figure 6-4. Figure 6-1 shows the LED locations.

LED	Indicates	Remote Annunciation
1	Overspeed shutdown	Yes
2	Overtemperature shutdown	Yes
3	Engine running status indicator	Yes
4	Low oil pressure fault shutdown	Yes
5	Overcrank shutdown	Yes
6	Fuel valve energized	No
7	Cranking energized	No
8	Common fault indicator	No

Figure 6-4 Control Board LEDs

6.3 Fault Shutdowns

The generator set shuts down automatically under the fault conditions listed in Figure 6-5 and cannot be restarted until the controls are reset. Correct the fault condition and then reset the controller by placing either the remote control switch or the generator set master switch in the STOP position. The high engine temperature fault automatically resets when the generator set cools.

Refer to the troubleshooting charts in Sections 4 to further diagnose the cause of a fault shutdown.

Fault	Description	Fault Condition/Possible Cause
High engine temperature	Shuts down 5 seconds after the fault. When the engine cools, the fault clears and allows the generator set to be started without resetting the controller. The high engine temperature shutdown is inhibited (does not function) during the first 30 seconds after startup.	 Engine reaches shutdown temperature Very low oil level Air inlet or outlets blocked Cooling system malfunction
Low oil pressure	Shuts down 5 seconds after the fault. The low oil pressure shutdown does not function during the first 30 seconds after startup. Note: The low oil pressure shutdown does not protect against low oil level.	Engine oil pressure drops below low oil pressure limit Very low oil level
Overcrank	Shuts down after 70 seconds of cyclic cranking. The factory sets the circuit board for three starting attempts: crank 20 sec., rest 5 sec., crank 20 sec., overcrank fault. Overcrank shutdown also occurs in the case of a locked rotor.	Starting problem Locked rotor (2 seconds without rotation or no AC speed sensor input)
Overspeed	Shuts down immediately if the engine speed exceeds 3750 rpm.	Engine rpm exceeds 3750Loss of speed (AC) sensing

Figure 6-5 Fault Shutdowns

6.3.1 **Control Resetting Procedure** (Following Fault Shutdown)

Use the following procedure to restart the generator set after a fault shutdown.

- 1. Move either the generator set master switch or the remote switch to the STOP position.
- 2. Correct the cause of the fault shutdown. See the safety precautions at the beginning of this section before proceeding.
- 3. Start the generator set locally by moving the generator set master switch to the RUN position, or move the master switch to the AUTO position and start the generator set using the remote start switch. Run the generator set to verify that the cause of the shutdown has been corrected.
- 4. Move the generator set master switch to the STOP position to stop the generator set.
- 5. Move the generator set master switch to the AUTO position to return to standby operation.

6.4 Fault Shutdown Tests

Verify operation of the controller overspeed, overcrank, low coolant level, low oil pressure, and high engine temperature shutdowns by performing the following tests with the generator set running. Observe the LEDs on the controller circuit board during the tests. Refer to the service views in Section 1.4 for component locations.

Remove the generator set from the enclosure to gain access to the components in the following tests. See Section 5.1 for instructions to remove the generator set and run it using the service fixtures.

Note: If you run the generator set outside the enclosure. place the cover over the top of the generator to prevent contact with rotating parts. The cover has an opening in the center to allow cooling air flow.

Check the continuity of the wiring harness leads before replacing the control board. Refer to the wiring diagrams in Section 8 for the lead codes and connecting terminals.

If these tests are inconclusive, test the individual shutdown circuit components as described in Section 6.5.

Only authorized personnel should open the enclosure.

Operate the generator set only when all guards and electrical enclosures are in place.

Servicing the generator set when it is operating. Exposed moving parts can cause severe injury or death. Keep hands, feet, hair, clothing, and test leads away from the belts and pulleys when the generator set is running. Replace guards, screens, and covers before operating the generator

Short circuits. Hazardous voltage/current can cause severe injury or death. Short circuits can cause bodily injury and/or equipment damage. Do not contact electrical connections with tools or jewelry while making adjustments or repairs. Remove all jewelry before servicing the equipment.

6.4.1 Low Oil Pressure (LOP) Shutdown

The low oil pressure (LOP) switch closes 5 seconds after the oil pressure drops below 5 psi, shutting down the generator set and lighting LED4. The low oil pressure shutdown does not function during the first 30 seconds after startup.

To test the operation of the LOP shutdown, connect a jumper wire from pin J4-13 of the controller-to-engine wiring harness to the generator set ground. Start the generator set. After approximately 35 seconds the generator set shuts down and the fault lamp lights. If the generator set does not shut down, replace the control board.

6.4.2 **High Engine Temperature (HET)** Shutdown

The high engine temperature (HET) switch closes 5 seconds after the generator set temperature reaches 305°F, shutting down the generator set and lighting LED2 on the control board. The high engine temperature shutdown does not function during the first 30 seconds after startup.

To test the HET shutdown, connect a jumper from the HET switch (lead) to the generator set ground. Start the generator set. After approximately 35 seconds the generator set shuts down and the fault lamp lights. Five seconds after the jumper is removed, the fault lamp goes out and the generator set restarts. If the generator set does not shut down and restart as described, replace the control board.

Overcrank Shutdown 6.4.3

The generator set shuts down and LED5 lights after approximately 70 seconds of cyclic cranking (three attempts to start). The manufacturer sets the circuit board for three cranking attempts: crank 20 seconds, rest 5 seconds, crank 20 seconds, rest 5 seconds, crank 20 seconds, shutdown. Use the following procedure to test the overcrank shutdown operation.

Overcrank Shutdown Test Procedure

- 1. Turn off the fuel supply to prevent flooding and remove the coil wire from the ignition module.
- 2. Move the generator set master switch to the RUN position.
- 3. Verify that the generator set shuts down and the fault lamp lights after the third crank/rest cycle.

Overspeed Shutdown 6.4.4

The generator set shuts down and LED1 lights when the engine speed exceeds 3750 rpm.

Use the following procedure to test the operation of the overspeed shutdown.

Overspeed Shutdown Test Procedure

Note: Do not increase engine speed above 3950 rpm. Increasing the engine speed above 3950 rpm can raise the output voltage high enough to damage generator and connected equipment.

- 1. Disconnect the load from the generator set.
- 2. Connect a tachometer to the engine spark plug lead to measure the engine speed during the test.

Note: If a tachometer is not available, connect a frequency meter across terminals C and E on the AC side of the voltage rectifier. Increase the engine speed as instructed in step 3. The generator set should shut down when the output frequency reaches 750 Hz. Do not exceed 790 Hz.

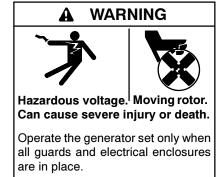
- 3. With the generator set running, carefully move the throttle linkage to increase the engine speed. Watch the tachometer and note the speed when the generator set shuts down.
- 4. Reset the controller by moving the master switch to the OFF position and then back to AUTO.

If the generator set does not shut down when the engine speed exceeds 3750 rpm, replace the control board.

6.5 Control Board Tests

Use the troubleshooting procedures in Section 4 to diagnose generator set and engine problems. If the troubleshooting procedures indicate a problem with the controller circuit board, use the tests in this section to check the board.

Refer to the wiring diagrams in Section 8 when troubleshooting the generator set control circuit board. Circuit board components cannot be repaired or replaced; if the troubleshooting process reveals a faulty component on the circuit board, replace the board.


Note: Use an ohmmeter or continuity tester to check for shorts or open leads in the wiring harnesses before replacing the controller circuit board or other system components.

Disconnect the generator system from the remote control system at plug P6 and use the generator set master switch to operate the generator set. If the generator set operates normally when P6 is disconnected, then the problem is with the remote control system. Refer to the manufacturer's instructions for the remote control system to troubleshoot the problem. If the problem persists after P6 is disconnected, use the troubleshooting procedures in this manual to diagnose the problem.

Hazardous voltage. Will cause severe injury or death.

Only authorized personnel should open the enclosure.

Servicing the generator set when it is operating. Exposed moving parts can cause severe injury or death. Keep hands, feet, hair, clothing, and test leads away from the belts and pulleys when the generator set is running. Replace guards, screens, and covers before operating the generator set.

Short circuits. Hazardous voltage/current can cause severe injury or death. Short circuits can cause bodily injury and/or equipment damage. Do not contact electrical connections with tools or jewelry while making adjustments or repairs. Remove all jewelry before servicing the equipment.

6.5.1 **Fuel Control Circuit**

Move the generator set master switch to the START position and check for 12 VDC on pin P5-1 (lead 70) of the fuel valve connector. If the valve receives voltage but does not open, replace the valve.

If there is no voltage to the valve, check the battery voltage, battery connections, and ignition system (see Section 5.5). If the battery and ignition system function correctly but the fuel valve does not receive voltage, replace the controller circuit board.

Speed Sensing and Governor 6.5.2 (Throttle Control) Circuits

The controller monitors the AC voltage produced by the stator to sense and control the engine speed. If the engine speed varies erratically, test the governor operation as described in Section 5.4. If the tests show that the erratic operation is not caused by a faulty governor, replace the controller circuit board.

6.5.3 **Start Circuits**

Move the generator set master switch to the START or RUN position. If the engine does not crank, check the following components.

- 1. Check the battery voltage. Recharge or replace a weak or dead battery.
- 2. Check for 12 VDC to the starter motor. Also verify that the starter motor is grounded. See Section 8, Wiring Diagrams. If the starter motor is receiving voltage but not functioning, replace it. If there is no voltage to the starter motor, check the harness and connections and then proceed to step 3 to check the starter (crank) relay.
- 3. Check for 12 VDC to the crank relay. Section 8, Wiring Diagrams. If the crank relay is receiving voltage but not functioning, replace it. If there is no voltage to the crank relay, check the harness and connections.
- 4. Check for 12 VDC from the control board at P2-1. If there is no voltage, replace the controller circuit board.

6.5.4 **Ignition Circuits**

Move the generator set master switch to the START position. If the engine cranks but does not start, check for voltage from lead 70 to ground at terminal B on the ignition module and at the positive terminal of the ignition coil. If no voltage is present during cranking, replace the controller circuit board. If the ignition system is receiving 12 VDC, check the spark plug and test the other ignition system components.

Voltage Programming Shunt 6.6

Control board GM22402 uses a programming shunt for voltage selection. See Figure 6-6 for the programming shunt location. Set programming shunts JP1A through JP1D to select the generator set kW and voltage as shown in Figure 6-6 and Figure 6-7.

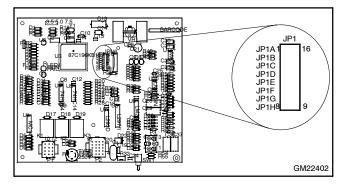


Figure 6-6 Programming Shunt Location

Power Selection Jumpers							
kW rating JP1A JP1B							
3.5	OUT	OUT					
5.0	OUT	IN					
7.5	IN	OUT					
Voltage S	election Jumper	's					
Voltage Rating, VDC	JP1C	JP1D					
24	OUT	OUT					
36	OUT	IN					
48	48 IN OUT						
96 IN IN							
Note: Jumpers JP1E and JP1F have no function. Jumpers JP1G and JP1H are for factory use only.							

Figure 6-7 Jumper Configurations

6.7 Control Board Replacement

NOTICE

Electrostatic discharge damage. Electrostatic discharge (ESD) damages electronic circuit boards. Prevent electrostatic discharge damage by wearing an approved grounding wrist strap when handling electronic circuit boards or integrated circuits. An approved grounding wrist strap provides a high resistance (about 1 megohm), not a direct short, to ground.

If the controller tests in Section 6 or the troubleshooting procedures in Section 4 indicate that the control board needs to be replaced, follow these guidelines:

- Keep the new board in its protective wrapping until installation.
- · Wear a grounding strap while handling the circuit board to prevent damage to the circuit board components.
- Set the programming shunts for kW and voltage. See Section 6.6.
- Check that all plug connections are secure.
- Calibrate the voltage after installing the board.

The new circuit board must be calibrated after installation. Use the following procedure to calibrate the board.

Installation Procedure

- 1. Place the generator set master switch in the OFF position.
- 2. Disconnect the power to the battery charger, if equipped.
- 3. Disconnect the generator set engine starting battery(ies), negative (-) lead first.
- 4. Open the enclosure to access the control board.
- 5. Disconnect all connectors to the control board, and remove the board from the enclosure.
- 6. Before installing replacement control board GM22402, install the jumper(s) (294634) as shown in Figure 6-7 to obtain the rated power (kW) and voltage for the generator set. Zero (0) to three jumpers are required, depending on the selected voltage and power ratings. See Figure 6-6 for the jumper locations.

Note: Verify that connector P2 is not connected to the board during jumper installation or removal.

- 7. Install the control board and connect all connectors removed in step 5.
- 8. Verify board mounting and connections and then close the enclosure.
- 9. Check that the generator set master switch is in the OFF position.
- 10. Reconnect the generator set engine starting battery, negative (-) lead last.
- 11. Reconnect power to the battery charger, if equipped.
- 12. Test run the generator set to verify the rated output

Calibration Procedure

Use the following procedure to calibrate the voltage.

- 1. Connect a voltmeter to the output terminals of the voltage rectifier.
- 2. Turn R37 on the circuit board fully clockwise.
- 3. Start the generator set with no load.
- 4. Adjust R37 to obtain the voltage output shown in Figure 6-8.

Generator Set Model	Measured Output Voltage, VDC
36 Volt	39
48 Volt	52

Figure 6-8 Output Voltages, VDC

Notes

Before disassembly, remove the generator set from any Refer to Section 3.3 for instructions. enclosure. Disconnect the battery (negative [-] lead first), fuel line, exhaust system, remote start switch, load leads, and other wiring harnesses. In addition to the precautions included in the text, observe all safety precautions listed at the beginning of this manual during the disassembly/reassembly procedure.

Hazardous voltage. Can cause severe injury or death.

Only authorized personnel should open the enclosure.

(600 volts and under)

WARNING

Accidental starting. Can cause severe injury or death.

Disconnect the battery cables before working on the generator set. Remove the negative (-) lead first when disconnecting the battery. Reconnect the negative (-) lead last when reconnecting the battery.

Disabling the generator set. Accidental starting can cause severe injury or death. Before working on the generator set or equipment connected to the set, disable the generator set as follows: (1) Place the generator set start/stop switch in the STOP position. (2) Disconnect the power to the battery charger, if equipped. (3) Remove the battery cables, negative (-) lead first. Reconnect the negative (-) lead last when reconnecting the battery. Follow these precautions to prevent the starting of the generator set by the remote start/stop switch.

NOTICE

Hardware damage. The engine and generator set may use both American Standard and metric hardware. Use the correct size tools to prevent rounding of the bolt heads and nuts.

Disassembly Procedure 7.1

- 1. Follow the instructions in Section 3.3 to open the cabinet, disconnect the generator set, and remove it from the cabinet. See Figure 7-1
- 2. Set the generator set on the service fixture, aligning the generator set's mounting holes with the pins in the fixture.

4. Exhaust pipe connection (not visible in this photo)

Figure 7-1 Generator Set Installed in the cabinet

3. Note the three stator lead connections to the voltage rectifier for reconnection later. Disconnect the stator leads from the voltage rectifier. See Figure 7-2.

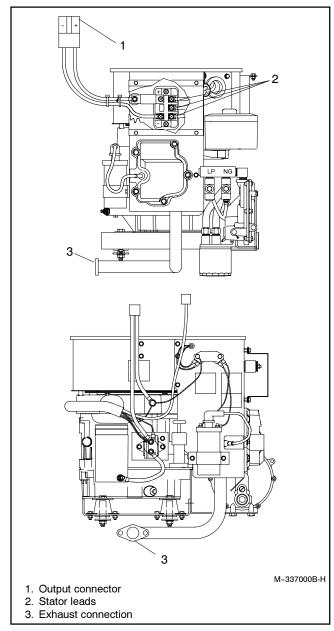


Figure 7-2 Generator Set

- 4. Disassemble the fan and alternator. See Figure 7-3 and Figure 7-4.
 - a. Remove three fan screws and remove the fan.
 - b. Remove the four socket head cap screws securing the stator to the engine adaptor.
 - c. Remove the stator, guiding the three stator leads through the opening in the shroud.

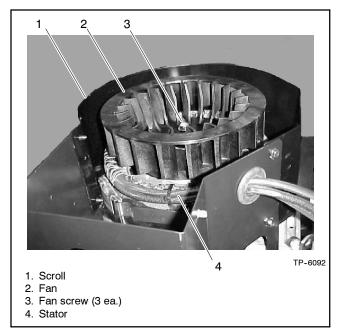


Figure 7-3 Alternator with Fan

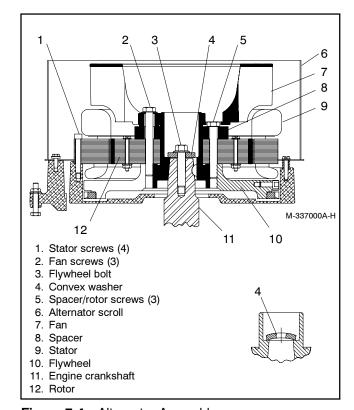


Figure 7-4 Alternator Assembly

d. Remove the three screws securing the spacer and rotor to the flywheel. Remove the spacer and the rotor. See Figure 7-5.

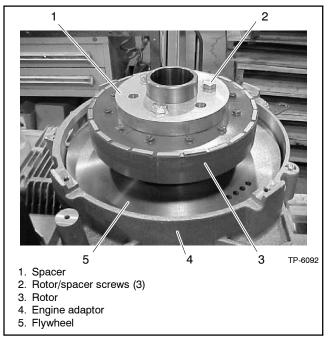


Figure 7-5 Rotor and Spacer (shroud and stator removed)

- 5. Remove the flywheel, if necessary.
 - a. Remove the thrubolt and convex washer at the center of the flywheel taper. See Figure 7-4.
 - b. Pull the flywheel off the engine crankshaft.

Reassembly Procedure

- 1. Install the flywheel, if it was removed.
 - a. Clean the engine crankshaft and flywheel taper with a dry cloth.
 - b. Slide the flywheel onto the engine crankshaft.
 - c. Install the M10-1.50 x 45 mm (1.772 in.) thrubolt and convex washer. Install the washer with the convex side up, as shown in Figure 7-4.
 - d. Use a torque wrench to tighten the thrubolt to 67 Nm (49.4 ft. lb.).
- 2. Reassemble the alternator. See Figure 7-4.
 - a. Slide the rotor over the flywheel taper, aligning the bolt holes in the rotor and the flywheel.
 - b. Place the spacer on the rotor, aligning the bolt holes.

- c. Use three 63.5 mm (3/8-16 x 2.5 in.) hex head screws to secure the spacer and rotor to the flywheel. See Figure 7-5. Do not tighten the screws.
- d. Place the stator in position as shown in Figure 7-6. Feed the stator leads through the opening in the alternator scroll.

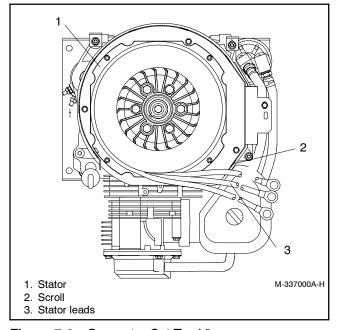


Figure 7-6 Generator Set Top View

- e. Use four 44.5 mm (1/4-20 x 1.75 in.) socket head cap screws to secure the stator to the alternator adaptor. Do not tighten the screws.
- f. Use a 0.25 mm (0.010 in.) feeler gauge to check the gap between the rotor and stator at several places. Adjust the stator position so that the gap is even all around. Use a torque wrench to tighten the rotor screws to 38 Nm (28.0 ft. lb.). Tighten the stator screws to 11 Nm (8.1 ft. lb.) and verify that the gap is 0.25 mm (0.010 in.) all around.
- 3. Install the fan.
 - a. Place the fan on the spacer, aligning the bolt holes with the three unused holes in the spacer, rotor, and flywheel.
 - b. Use three 82.5 mm (3/8-16 x 3.25 in.) hex head screws and washers to secure the fan. Use a torque wrench to tighten the screws to 25 Nm (18.4 ft. lb.).
- 4. Connect the stator leads to the voltage rectifier. Tighten the voltage rectifier terminal screws to 5 Nm (44 in. lb.).

- 5. Follow the instructions in Section 3.3 to install the generator set in the cabinet.
- 6. Reconnect the generator set components.
 - a. Reconnect the exhaust pipes at the lower left side of the generator set.
 - b. Reconnect the fuel line.
 - c. Reconnect the wiring harnesses.
 - d. Reconnect the engine starting battery, negative (-) lead last.

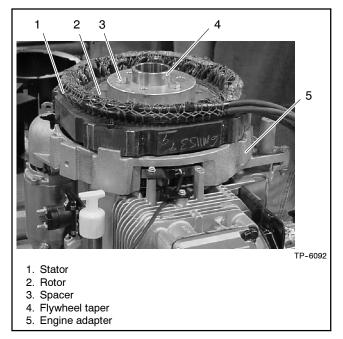


Figure 7-7 Alternator (shroud removed to show components)

Section 8 Diagrams and Drawings

Specification Numbers	Drawing Description	Drawing Number	Figure
PA-195023, PA-195027	Wiring Diagram	GM11880-C	Figure 8-1
	Schematic	ADV-6536-C	Figure 8-2
GM14140-GA1, GM14140-GA2, GM14140-GA3, GM14140-GA4, GM14140-GA5, GM14140-GA6, GM14140-GA7, GM14140-GA8, GM14140-GA9, GM14140-GA10, GM14140-GA11	Wiring Diagram	GM14258-B	Figure 8-3

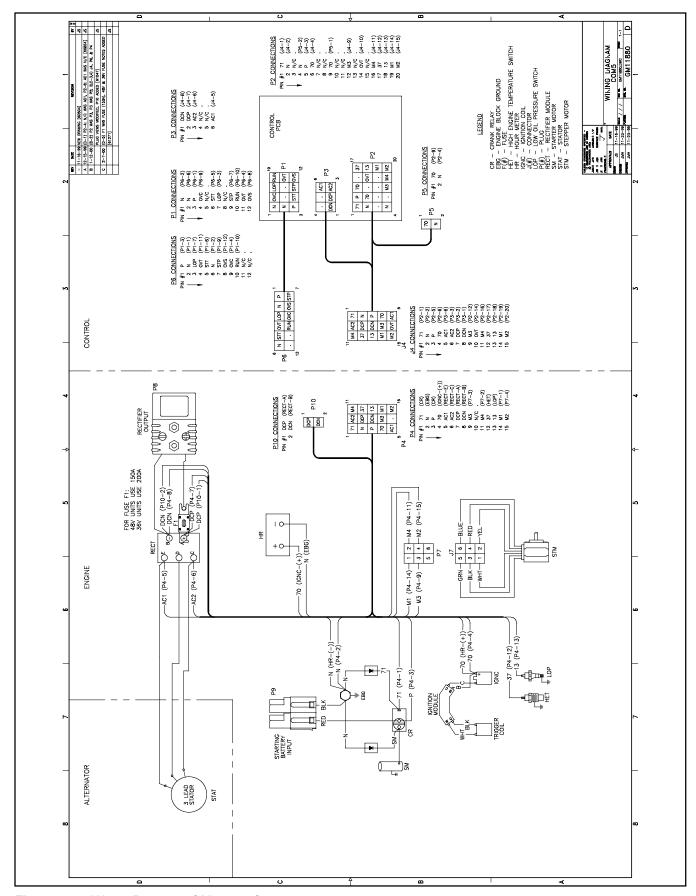


Figure 8-1 Wiring Diagram, GM11880-C

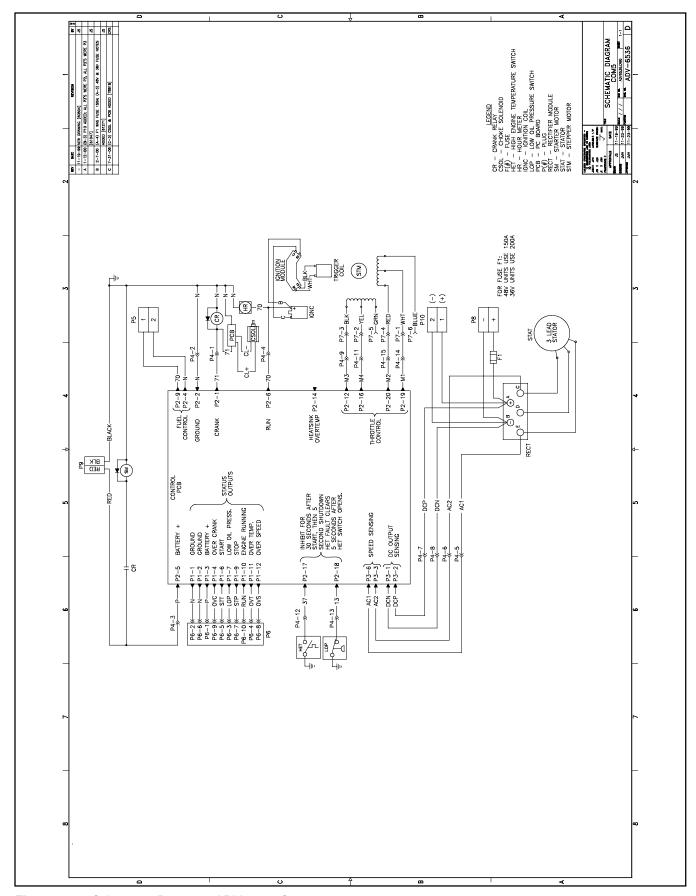


Figure 8-2 Schematic Diagram, ADV-6536-C

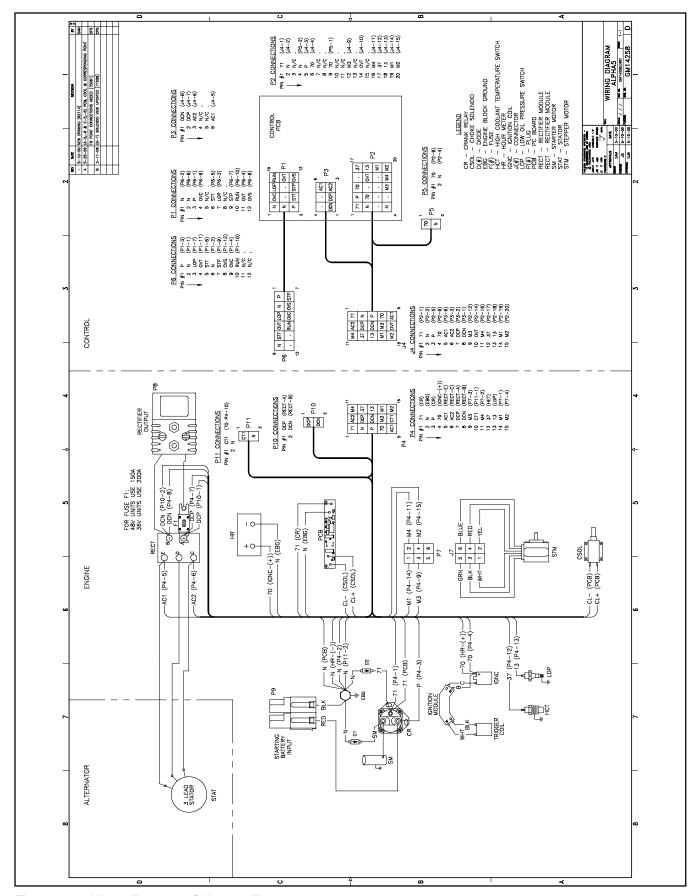


Figure 8-3 Wiring Diagram, GM14258-B

The following list contains abbreviations that may appear in this publication.

1110 10110	swing not containe approviation	io triat ma	y appear in time publication.		
A, amp	ampere	cfm	cubic feet per minute	ext.	external
ABDC	after bottom dead center	CG	center of gravity	F	Fahrenheit, female
AC	alternating current	CID	cubic inch displacement	fglass.	fiberglass
A/D	analog to digital	CL	centerline	FHM	flat head machine (screw)
ADC	analog to digital converter	cm	centimeter	fl. oz.	fluid ounce
adj.	adjust, adjustment	CMOS	complementary metal oxide	flex.	flexible
ADV	advertising dimensional	000	substrate (semiconductor)	freq.	frequency
,,,,,,	drawing	cogen.	cogeneration	FS.	full scale
AHWT	anticipatory high water	com	communications (port)	ft.	foot, feet
	temperature S	coml	commercial	ft. lb.	
AISI	American Iron and Steel		Commercial/Recreational		foot pounds (torque) feet per minute
	Institute	conn.	connection	ft./min.	
ALOP	anticipatory low oil pressure	cont.	continued	g	gram
alt.	alternator	CPVC	chlorinated polyvinyl chloride	ga.	gauge (meters, wire size)
Al	aluminum		critical	gal.	gallon
ANSI	American National Standards	crit.		gen.	generator
	Institute	CRT	cathode ray tube	genset	generator set
	(formerly American Standards	CSA	Canadian Standards Association	GFI	ground fault interrupter
	Association, ASA)	CT	current transformer	GND, 🕀	ground
AO	anticipatory only	Cu		gov.	governor
API	American Petroleum Institute		copper	gph	gallons per hour
approx.	approximate, approximately	cu. in.	cubic inch	gpm	gallons per minute
AR	as required, as requested	CW.	clockwise	gr.	grade, gross
AS	as supplied, as stated, as	CWC	city water-cooled	GRD	equipment ground
	suggested	cyl.	cylinder	gr. wt.	gross weight
ASE	American Society of Engineers	D/A	digital to analog	•	•
ASME	American Society of	DAC	digital to analog converter		height by width by depth
	Mechanical Engineers	dB	decibel	HC	hex cap
assy.	assembly	dBA	decibel (A weighted)	HCHT	high cylinder head temperature
ASTM	American Society for Testing	DC	direct current	HD	heavy duty
4700	Materials	DCR	direct current resistance	HET	high exhaust temperature,
ATDC	after top dead center	deg., °	degree	la ave	high engine temperature
ATS	automatic transfer switch	dept.	department	hex	hexagon
auto.	automatic	dia.	diameter	Hg	mercury (element)
aux.	auxiliary	DI/EO	dual inlet/end outlet	HH	hex head
A/V	audiovisual	DIN	Deutsches Institut fur Normung	HHC	hex head cap
avg.	average	5	e. V. (also Deutsche Industrie	HP	horsepower
AVR	automatic voltage regulator		Normenausschuss)	hr.	hour
AWG	American Wire Gauge	DIP	dual inline package	HS	heat shrink
AWM	appliance wiring material	DPDT	double-pole, double-throw	hsg.	housing
bat.	battery	DPST	double-pole, single-throw	HVAC	heating, ventilation, and air
BBDC	before bottom dead center	DS	disconnect switch		conditioning
BC	battery charger, battery	DVR	digital voltage regulator	HWT	high water temperature
	charging	E, emer.	emergency (power source)	Hz	hertz (cycles per second)
BCA	battery charging alternator	EDI	electronic data interchange	IC	integrated circuit
BCI	Battery Council International	EFR	emergency frequency relay	ID	inside diameter, identification
BDC	before dead center	e.g.	for example (exempli gratia)	IEC	International Electrotechnical
BHP	brake horsepower	EG.	electronic governor		Commission
blk.	black (paint color), block	EGSA	Electrical Generating Systems	IEEE	Institute of Electrical and
	(engine)	LOOA	Association		Electronics Engineers
blk. htr.	block heater	EIA	Electronic Industries	IMS	improved motor starting
BMEP	brake mean effective pressure		Association	in.	inch
bps	bits per second	EI/EO	end inlet/end outlet	in. H ₂ O	inches of water
br.	brass	EMI	electromagnetic interference	in. Hg	inches of mercury
BTDC	before top dead center	emiss.	emission	in. lb.	inch pounds
Btu	British thermal unit	eng.	engine	Inc.	incorporated
Btu/min.	British thermal units per minute	EPA	Environmental Protection	ind.	industrial
C	Celsius, centigrade		Agency	int.	internal
cal.	calorie	EPS	emergency power system	int./ext.	internal/external
CARB	California Air Resources Board	ER	emergency relay	I/O	input/output
CB	circuit breaker	ES	engineering special,	IΡ	iron pipe
CC	cubic centimeter		engineered special	ISO	International Organization for
CCA		ESD	electrostatic discharge		Standardization
	cold cranking amps counterclockwise	est.	estimated	J	joule
CCW.		E-Stop	emergency stop	JIS	Japanese Industry Standard
CEC	Canadian Electrical Code	etc.	et cetera (and so forth)	k	kilo (1000)
cert.	certificate, certification, certified	exh.	exhaust	K	kelvin
cfh	cubic feet per hour				

TP-6482 8/06 Appendix 71

kA	kiloampere	MTBO	mean time between overhauls	rly.	relay
KB	kilobyte (2 ¹⁰ bytes)	mtg.	mounting	rms	root mean square
kg	kilogram	MW	megawatt	rnd.	round
kg/cm ²	kilograms per square	mW	milliwatt	ROM	read only memory
kg/ciii	centimeter	μF	microfarad	rot.	rotate, rotating
kgm	kilogram-meter	: .			, •
kg/m ³	kilograms per cubic meter	N, norm. NA	normal (power source) not available, not applicable	rpm RS	revolutions per minute right side
kHz	kilohertz			RTV	•
kJ	kilojoule	nat. gas NBS	natural gas National Bureau of Standards	SAE	room temperature vulcanization Society of Automotive
km	kilometer	NC		SAL	Engineers
kOhm, kΩ		NEC	normally closed	scfm	standard cubic feet per minute
kPa	kilopascal		National Electrical Code	SCR	silicon controlled rectifier
kph	kilometers per hour	NEMA	National Electrical Manufacturers Association	s, sec.	second
kV	kilovolt	NFPA	National Fire Protection	S, 300.	Systeme international d'unites,
kVA	kilovolt ampere	INITA	Association	Oi.	International System of Units
kVAR	kilovolt ampere reactive	Nm	newton meter	SI/EO	side in/end out
kW	kilowatt	NO	normally open	sil.	silencer
kWh	kilowatt-hour	no., nos.	number, numbers	SN	serial number
kWm	kilowatt mechanical	NPS	National Pipe, Straight	SPDT	single-pole, double-throw
		NPSC	National Pipe, Straight-coupling	SPST	single-pole, single-throw
L LAN	liter	NPT	National Standard taper pipe	spec,	onigio polo, onigio unon
	local area network	141 1	thread per general use	specs	specification(s)
	length by width by height	NPTF	National Pipe, Taper-Fine	sq.	square
lb.	pound, pounds	NR	not required, normal relay	sq. cm	square centimeter
lbm/ft ³	pounds mass per cubic feet	ns	nanosecond	sq. in.	square inch
LCB	line circuit breaker	OC	overcrank	SS	stainless steel
LCD	liquid crystal display	OD	outside diameter	std.	standard
ld. shd.	load shed	OEM	original equipment	stl.	steel
LED	light emitting diode		manufacturer	tach.	tachometer
Lph	liters per hour	OF	overfrequency	TD	time delay
Lpm	liters per minute	opt.	option, optional	TDC	top dead center
LOP	low oil pressure	os	oversize, overspeed	TDEC	time delay engine cooldown
LP	liquefied petroleum	OSHA	Occupational Safety and Health	TDEN	time delay emergency to
LPG	liquefied petroleum gas		Administration		normal
LS	left side	OV	overvoltage	TDES	time delay engine start
L _{wa}	sound power level, A weighted	OZ.	ounce	TDNE	time delay normal to
LWL	low water level	p., pp.	page, pages		emergency
LWT	low water temperature	PC	personal computer	TDOE	time delay off to emergency
m	meter, milli (1/1000)	PCB	printed circuit board	TDON	time delay off to normal
М	mega (10 ⁶ when used with SI	pF	picofarad	temp.	temperature
m ³	units), male	PF	power factor	term.	terminal
m ³ /min.	cubic meter	ph., \varnothing	phase	TIF	telephone influence factor
	cubic meters per minute	PHC	Phillips head crimptite (screw)	TIR	total indicator reading
mA	milliampere	PHH	Phillips hex head (screw)	tol.	tolerance
man.	manual	PHM	pan head machine (screw)	turbo.	turbocharger
max.	maximum	PLC	programmable logic control	typ.	typical (same in multiple
MB	megabyte (2 ²⁰ bytes)	PMG	permanent-magnet generator		locations)
MCM	one thousand circular mils	pot	potentiometer, potential	UF	underfrequency
MCCB	molded-case circuit breaker	ppm	parts per million	UHF	ultrahigh frequency
meggar	megohmmeter	PROM	programmable read-only	UL	Underwriter's Laboratories, Inc.
MHz	megahertz 		memory	UNC	unified coarse thread (was NC)
mi.	mile	psi	pounds per square inch	UNF	unified fine thread (was NF)
mil	one one-thousandth of an inch	pt.	pint	univ.	universal
min.	minimum, minute	PTC	positive temperature coefficient	US	undersize, underspeed
misc.	miscellaneous	PTO	power takeoff	UV	ultraviolet, undervoltage
MJ	megajoule	PVC	polyvinyl chloride	V	volt
mJ	millijoule	qt.	quart, quarts	VAC	volts alternating current
mm	millimeter	qty.	quantity	VAR	voltampere reactive
mOhm,	milliohm	R	replacement (emergency)	VDC	volts direct current
mΩ	milliohm		power source	VFD	vacuum fluorescent display
MOhm, M Ω	megohm	rad.	radiator, radius	VGA	video graphics adapter
MOV	metal oxide varistor	RAM	random access memory	VHF	very high frequency
MPa		RDO	relay driver output	W	watt
	megapascal	ref.	reference	WCR	withstand and closing rating
mpg mph	miles per gallon	rem.	remote	w/	with
THEFT	miles per hour		Residential/Commercial	w/o	without
•					
MS	military standard	RFI	radio frequency interference	wt.	weight
•	meters per second mean time between failure	RFI RH	radio frequency interference round head round head machine (screw)	wt. xfmr	weight transformer

72 Appendix TP-6482 8/06

Appendix B Common Hardware Application Guidelines

Use the information below and on the following pages to identify proper fastening techniques when no specific reference for reassembly is made.

Bolt/Screw Length: When bolt/screw length is not given, use Figure 1 as a guide. As a general rule, a minimum length of one thread beyond the nut and a maximum length of 1/2 the bolt/screw diameter beyond the nut is the preferred method.

Washers and Nuts: Use split lock washers as a bolt locking device where specified. Use SAE flat washers with whiz nuts, spiralock nuts, or standard nuts and preloading (torque) of the bolt in all other applications.

See Appendix C, General Torque Specifications, and other torque specifications in the service literature.

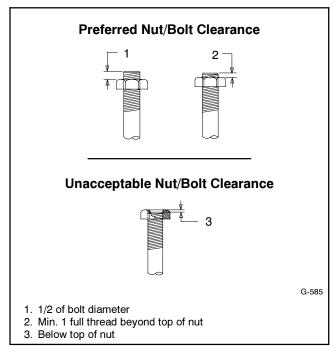


Figure 1 Acceptable Bolt Lengths

Steps for common hardware application:

- 1. Determine entry hole type: round or slotted.
- 2. Determine exit hole type: fixed female thread (weld nut), round, or slotted.

For round and slotted exit holes, determine if hardware is greater than 1/2 inch in diameter, or 1/2 inch in diameter or less. Hardware that is *greater than 1/2 inch* in diameter takes a standard nut and SAE washer. Hardware 1/2 inch or less in diameter can take a properly torqued whiz nut or spiralock nut. See Figure 2.

- 3. Follow these SAE washer rules after determining exit hole type:
 - a. Always use a washer between hardware and a slot.
 - b. Always use a washer under a nut (see 2 above for exception).
 - c. Use a washer under a bolt when the female thread is fixed (weld nut).
- 4. Refer to Figure 2, which depicts the preceding hardware configuration possibilities.

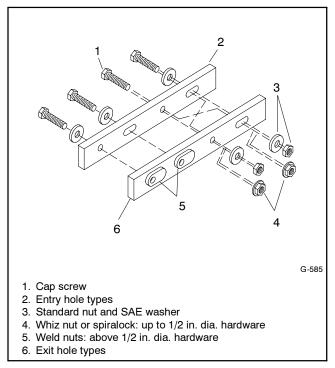


Figure 2 Acceptable Hardware Combinations

TP-6482 8/06 Appendix 73

Appendix C General Torque Specifications

	American Standard Fasteners Torque Specifications							
	Assembled into Cast Iron or Steel Torque							Assembled into Aluminum
Size	Measurement	Grad	e 2	Grad	e 5	Grad	e 8	Grade 2 or 5
8-32	Nm (in. lb.)	1.8	(16)	2.3	(20)	_		
10-24	Nm (in. lb.)	2.9	(26)	3.6	(32)	_		
10-32	Nm (in. lb.)	2.9	(26)	3.6	(32)	_		
1/4-20	Nm (in. lb.)	6.8	(60)	10.8	(96)	14.9	(132)	
1/4-28	Nm (in. lb.)	8.1	(72)	12.2	(108)	16.3	(144)	
5/16-18	Nm (in. lb.)	13.6	(120)	21.7	(192)	29.8	(264)	
5/16-24	Nm (in. lb.)	14.9	(132)	23.1	(204)	32.5	(288)	
3/8-16	Nm (ft. lb.)	24.0	(18)	38.0	(28)	53.0	(39)	
3/8-24	Nm (ft. lb.)	27.0	(20)	42.0	(31)	60.0	(44)	
7/16-14	Nm (ft. lb.)	39.0	(29)	60.0	(44)	85.0	(63)	
7/16-20	Nm (ft. lb.)	43.0	(32)	68.0	(50)	95.0	(70)	See Note 3
1/2-13	Nm (ft. lb.)	60.0	(44)	92.0	(68)	130.0	(96)	
1/2-20	Nm (ft. lb.)	66.0	(49)	103.0	(76)	146.0	(108)	
9/16-12	Nm (ft. lb.)	81.0	(60)	133.0	(98)	187.0	(138)	
9/16-18	Nm (ft. lb.)	91.0	(67)	148.0	(109)	209.0	(154)	
5/8-11	Nm (ft. lb.)	113.0	(83)	183.0	(135)	259.0	(191)	
5/8-18	Nm (ft. lb.)	128.0	(94)	208.0	(153)	293.0	(216)	
3/4-10	Nm (ft. lb.)	199.0	(147)	325.0	(240)	458.0	(338)	
3/4-16	Nm (ft. lb.)	222.0	(164)	363.0	(268)	513.0	(378)	
1-8	Nm (ft. lb.)	259.0	(191)	721.0	(532)	1109.0	(818)	
1-12	Nm (ft. lb.)	283.0	(209)	789.0	(582)	1214.0	(895)	

Metric Fasteners Torque Specifications, Measured in Nm (ft. lb.)							
Assembled into Cast Iron or Steel						Assembled into	
Size (mm)	nm) Grade 5.8 Grade 8.8 Grade 10.9		Grade 5.8 or 8.8				
M6 x 1.00	6.2	(4.6)	9.5	(7)	13.6	(10)	
M8 x 1.25	15.0	(11)	23.0	(17)	33.0	(24)	
M8 x 1.00	16.0	(11)	24.0	(18)	34.0	(25)	
M10 x 1.50	30.0	(22)	45.0	(34)	65.0	(48)	
M10 x 1.25	31.0	(23)	47.0	(35)	68.0	(50)	
M12 x 1.75	53.0	(39)	80.0	(59)	115.0	(85)	
M12 x 1.50	56.0	(41)	85.0	(63)	122.0	(90)	See Note 3
M14 x 2.00	83.0	(61)	126.0	(93)	180.0	(133)	
M14 x 1.50	87.0	(64)	133.0	(98)	190.0	(140)	
M16 x 2.00	127.0	(94)	194.0	(143)	278.0	(205)	
M16 x 1.50	132.0	(97)	201.0	(148)	287.0	(212)	
M18 x 2.50	179.0 (132)	273.0	(201)	390.0	(288)	
M18 x 1.50	189.0 (140)	289.0	(213)	413.0	(305)	

Notes:

- 1. The torque values above are general guidelines. Always use the torque values specified in the service manuals and/or assembly drawings when they differ from the above torque values.
- 2. The torque values above are based on new plated threads. Increase torque values by 15% if non-plated threads are used.
- 3. Hardware threaded into aluminum must have either two diameters of thread engagement or a 30% or more reduction in the torque to prevent stripped threads.

 4. Torque values are calculated as equivalent stress loading on American hardware with an approximate preload of 90% of the yield strength
- and a friction coefficient of 0.125.

74 Appendix TP-6482 8/06

Appendix D Common Hardware Identification

Screw/Bolts/Studs	
Head Styles	T
Hex Head or Machine Head	
Hex Head or Machine Head with Washer	
Flat Head (FHM)	
Round Head (RHM)	
Pan Head	
Hex Socket Head Cap or Allen™ Head Cap	Omm
Hex Socket Head or Allen™ Head Shoulder Bolt	0
Sheet Metal Screw	
Stud	
Drive Styles	
Hex	
Hex and Slotted	
Phillips®	4
Slotted	0
Hex Socket	

Nuts					
Nut Styles					
Hex Head					
Lock or Elastic					
Square					
Cap or Acorn					
Wing	Ø				
Washers					
Washer Styles					
Plain					
Split Lock or Spring	Q				
Spring or Wave					
External Tooth Lock	\$ 0 g				
Internal Tooth Lock					
Internal-External Tooth Lock					

Hardness Grades	
American Standard	
Grade 2	$\bigcirc\bigcirc\bigcirc$
Grade 5	
Grade 8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Grade 8/9 (Hex Socket Head)	0
Metric	
Number stamped on hardware; 5.8 shown	5.8

Allen™ head screw is a trademark of Holo-Krome Co.

Phillips® screw is a registered trademark of Phillips Screw Company.

Sample Dimensions

American Standard (Screws, Bolts, Studs, and Nuts) **Plain Washers** 9/32 x 5/8 x 1/16 — Thickness <u>1/4</u>-<u>20</u> x <u>1</u> Length In Inches (Screws and Bolts) Threads Per Inch **External Dimension** Major Thread Diameter In Fractional Inches Or Screw Number Size Internal Dimension Metric (Screws, Bolts, Studs, and Nuts) **Lock Washers** <u>M8-1.25</u> x <u>20</u> Length In Millimeters (Screws and Bolts) <u>5/8</u> Distance Between Threads In Millimeters Internal Dimension Major Thread Diameter In Millimeters

TP-6482 8/06 Appendix 75

Appendix E Common Hardware List

The Common Hardware List lists part numbers and dimensions for common hardware items.

American Standard

Part No.	Dimensions	Part No.	Dimensions	Part No.	Dime	nsions	Туре	
Hex Head E	Bolts (Grade 5)	Hex Head I	Bolts, cont.	Hex Nuts				
X-465-17 X-465-6	1/4-20 x .38 1/4-20 x .50	X-6238-14 X-6238-16	3/8-24 x .75 3/8-24 x 1.25	X-6009-1	1-8	3	Stand	ard
X-465-2	1/4-20 x .62	X-6238-21	3/8-24 x 4.00	X-6210-3	6-3		Whiz	
X-465-16 X-465-18	1/4-20 x .75 1/4-20 x .88	X-6238-22	3/8-24 x 4.50	X-6210-4	8-3		Whiz	
X-465-7	1/4-20 X .88 1/4-20 X 1.00	X-6024-5	7/16-14 x .75	X-6210-5 X-6210-1		-24 -32	Whiz Whiz	
X-465-8	1/4-20 x 1.25	X-6024-2 X-6024-8	7/16-14 x 1.00 7/16-14 x 1.25					
X-465-9 X-465-10	1/4-20 x 1.50 1/4-20 x 1.75	X-6024-3	7/16-14 x 1.50	X-6210-2 X-6210-6		1-20 1-28	Spiral Spiral	
X-465-11	1/4-20 x 2.00	X-6024-4	7/16-14 x 2.00	X-6210-7		6-18	Spiral	
X-465-12	1/4-20 x 2.25	X-6024-11 X-6024-12	7/16-14 x 2.75 7/16-14 x 6.50	X-6210-8		6-24	Spiral	
X-465-14 X-465-21	1/4-20 x 2.75 1/4-20 x 5.00	X-129-15	1/2-13 x .75	X-6210-9 X-6210-10		3-16 3-24	Spiral Spiral	
X-465-25	1/4-28 x .38	X-129-13 X-129-17	1/2-13 x 1.00	X-6210-11		6-14	Spiral	
X-465-20	1/4-28 x 1.00	X-129-18	1/2-13 x 1.25	X-6210-12		2-13	Spiral	
X-125-33	5/16-18 x .50	X-129-19 X-129-20	1/2-13 x 1.50 1/2-13 x 1.75	X-6210-15		16-20	Spiral	
X-125-23	5/16-18 x .62	X-129-20 X-129-21	1/2-13 x 1.73 1/2-13 x 2.00	X-6210-14	1/2	2-20	Spiral	OCK
X-125-3 X-125-31	5/16-18 x .75 5/16-18 x .88	X-129-22	1/2-13 x 2.25	X-85-3		3-11	Stand	
X-125-5	5/16-18 x 1.00	X-129-23 X-129-24	1/2-13 x 2.50	X-88-12 X-89-2		l-10 2-20	Stand Stand	
X-125-24	5/16-18 x 1.25	X-129-24 X-129-25	1/2-13 x 2.75 1/2-13 x 3.00	X-03-2	1/2	-20	Stariu	aiu
X-125-34 X-125-25	5/16-18 x 1.50 5/16-18 x 1.75	X-129-27	1/2-13 x 3.50	NA7 1				
X-125-26	5/16-18 x 2.00	X-129-29 X-129-30	1/2-13 x 4.00 1/2-13 x 4.50	Washers				
230578	5/16-18 x 2.25	X-463-9	1/2-13 x 4.30 1/2-13 x 5.50					Bolt/
X-125-29 X-125-27	5/16-18 x 2.50 5/16-18 x 2.75	X-129-44	1/2-13 x 6.00	Part No.	ID	OD	I hick.	Screw
X-125-28	5/16-18 x 3.00	X-129-51	1/2-20 x .75	X-25-46	.125	.250	.022	#4
X-125-22	5/16-18 x 4.50	X-129-45	1/2-20 x 1.25	X-25-9 X-25-48	.156 .188	.375 .438	.049 .049	#6 #8
X-125-32 X-125-35	5/16-18 x 5.00 5/16-18 x 5.50	X-129-52	1/2-20 x 1.50	X-25-36	.219	.500	.049	#10
X-125-36	5/16-18 x 6.00	X-6021-3	5/8-11 x 1.00	X-25-40	.281	.625	.065	1/4
X-125-40	5/16-18 x 6.50	X-6021-4 X-6021-2	5/8-11 x 1.25 5/8-11 x 1.50	X-25-85 X-25-37	.344 .406	.687 .812	.065	5/16
X-125-43	5/16-24 x 1.75	X-6021-1	5/8-11 x 1.75	X-25-37 X-25-34	.469	.922	.065 .065	3/8 7/16
X-125-44 X-125-30	5/16-24 x 2.50 5/16-24 x .75	273049	5/8-11 x 2.00	X-25-26	.531	1.062	.095	1/2
X-125-30 X-125-39	5/16-24 x 2.00	X-6021-5 X-6021-6	5/8-11 x 2.25 5/8-11 x 2.50	X-25-15	.656	1.312	.095	5/8
X-125-38	5/16-24 x 2.75	X-6021-7	5/8-11 x 2.75	X-25-29 X-25-127	.812	1.469 2.000	.134 .134	3/4 1
X-6238-2	3/8-16 x .62	X-6021-12	5/8-11 x 3.75	X-25-121	1.002	2.000	.104	'
X-6238-10	3/8-16 x .75	X-6021-11 X-6021-10	5/8-11 x 4.50 5/8-11 x 6.00					
X-6238-3 X-6238-11	3/8-16 x .88 3/8-16 x 1.00	X-6021-9						
X-6238-4	3/8-16 x 1.25		5/8-18 x 2.50					
X-6238-5	3/8-16 x 1.50	X-6239-1 X-6239-8	3/4-10 x 1.00 3/4-10 x 1.25					
X-6238-1 X-6238-6	3/8-16 x 1.75 3/8-16 x 2.00	X-6239-2	3/4-10 x 1.23 3/4-10 x 1.50					
X-6238-17	3/8-16 x 2.25	X-6239-3	3/4-10 x 2.00					
X-6238-7	3/8-16 x 2.50	X-6239-4 X-6239-5	3/4-10 x 2.50 3/4-10 x 3.00					
X-6238-8 X-6238-9	3/8-16 x 2.75 3/8-16 x 3.00	X-6239-6	3/4-10 x 3.50					
X-6238-19	3/8-16 x 3.25	X-792-1	1-8 x 2.25					
X-6238-12	3/8-16 x 3.50	X-792-1 X-792-5	1-8 x 3.00					
X-6238-20 X-6238-13	3/8-16 x 3.75 3/8-16 x 4.50	X-792-8	1-8 x 5.00					
X-6238-18	3/8-16 x 4.50 3/8-16 x 5.50							
X-6238-25	3/8-16 x 6.50							

76 Appendix TP-6482 8/06

Metric

Hex head bolts are hardness grade 8.8 unless noted.

Part No.	Dimensions	Part No.	Dimensions	Part No.	Dimensions
				Hex Head Bolts	
nex nead Boils	(Partial Thread)	continued	(Partial Thread),	continued	(ruii iiireau),
M931-05055-60	M5-0.80 x 55				1404 75 40
M931-06040-60	M6-1.00 x 40	M960-16090-60	M16-1.50 x 90	M933-12016-60	M12-1.75 x 16
M931-06055-60 M931-06060-60	M6-1.00 x 55 M6-1.00 x 60	M931-16090-60	M16-2.00 x 90	M933-12020-60 M961-12020-60F	M12-1.75 x 20 M12-1.50 x 20
M931-06060-8S	M6-1.00 x 60	M931-16100-60 M931-16100-82	M16-2.00 x 100 M16-2.00 x 100*	M933-12025-60	M12-1.75 x 25
M931-06070-60	M6-1.00 x 70	M931-16120-60	M16-2.00 x 100°	M933-12025-82	M12-1.75 x 25*
M931-06070-SS	M6-1.00 x 70	M931-16150-60	M16-2.00 x 150	M961-12030-60	M12-1.25 x 30
M931-06075-60	M6-1.00 x 75			M933-12030-82	M12-1.75 x 30*
M931-06090-60	M6-1.00 x 90	M931-20065-60	M20-2.50 x 65	M961-12030-82F	M12-1.50 x 30*
M931-06145-60	M6-1.00 x 145	M931-20090-60	M20-2.50 x 90	M933-12030-60	M12-1.75 x 30
M931-06150-60	M6-1.00 x 150	M931-20100-60 M931-20120-60	M20-2.50 x 100 M20-2.50 x 120	M933-12035-60	M12-1.75 x 35
M931-08035-60	M8-1.25 x 35	M931-20140-60	M20-2.50 x 140	M961-12040-82	M12-1.25 x 40*
M931-08040-60	M8-1.25 x 40	M931-20160-60	M20-2.50 x 160	M933-12040-60	M12-1.75 x 40
M931-08045-60	M8-1.25 x 45			M933-12040-82	M12-1.75 x 40*
M931-08050-60	M8-1.25 x 50	M931-22090-60	M22-2.50 x 90	M961-14025-60	M14-1.50 x 25
M931-08055-60	M8-1.25 x 55	M931-22120-60	M22-2.50 x 120	M933-14025-60	M14-2.00 x 25
M931-08055-82	M8-1.25 x 55*	M931-22160-60	M22-2.50 x 160	M961-14050-82	M14-1.50 x 50*
M931-08060-60	M8-1.25 x 60	M931-24090-60	M24-3.00 x 90	M961-16025-60	M16-1.50 x 25
M931-08070-60	M8-1.25 x 70	M931-24120-60	M24-3.00 x 120	M933-16025-60	M16-2.00 x 25
M931-08070-82	M8-1.25 x 70* M8-1.25 x 75	M931-24160-60	M24-3.00 x 160	M961-16030-82	M16-1.50 x 30*
M931-08075-60 M931-08080-60	M8-1.25 x 80	M931-24200-60	M24-3.00 x 200	M933-16030-82	M16-2.00 x 30*
M931-08090-60	M8-1.25 x 90			M933-16035-60	M16-2.00 x 35
M931-08095-60	M8-1.25 x 95	Hex Head Bolts	(Full Thread)	M961-16040-60	M16-1.50 x 40
M931-08100-60	M8-1.25 x 100	M933-04006-60	M4-0.70 x 6	M933-16040-60	M16-2.00 x 40
M931-08110-60	M8-1.25 x 110			M961-16045-82	M16-1.50 x 45*
M931-08120-60	M8-1.25 x 120	M933-05030-60	M5-0.80 x 30	M933-16045-82	M16-2.00 x 45*
M931-08130-60	M8-1.25 x 130	M933-05035-60	M5-0.80 x 35	M933-16050-60	M16-2.00 x 50
M931-08140-60	M8-1.25 x 140	M933-05050-60	M5-0.80 x 50	M933-16050-82 M933-16060-60	M16-2.00 x 50* M16-2.00 x 60
M931-08150-60	M8-1.25 x 150	M933-06010-60	M6-1.00 x 10	M933-16070-60	M16-2.00 x 70
M931-08200-60	M8-1.25 x 200	M933-06012-60	M6-1.00 x 12	10070-00	W110-2.00 X 70
M931-10040-82	M10-1.25 x 40*	M933-06014-60	M6-1.00 x 14	M933-18035-60	M18-2.50 x 35
M931-10040-60	M10-1.50 x 40	M933-06016-60	M6-1.00 x 16	M933-18050-60	M18-2.50 x 50
M931-10045-60	M10-1.50 x 45	M933-06020-60	M6-1.00 x 20	M933-18060-60	M18-2.50 x 60
M931-10050-60	M10-1.50 x 50	M933-06025-60	M6-1.00 x 25	M933-20050-60	M20-2.50 x 50
M931-10050-82	M10-1.25 x 50*	M933-06030-60	M6-1.00 x 30	M933-20055-60	M20-2.50 x 55
M931-10055-60	M10-1.50 x 55	M933-06040-60 M933-06050-60	M6-1.00 x 40 M6-1.00 x 50	M933-24060-60	M24-3.00 x 60
M931-10060-60	M10-1.50 x 60	141933-00030-00	MO-1.00 X 30	M933-24065-60	M24-3.00 x 65
M931-10065-60	M10-1.50 x 65	M933-07025-60	M7-1.00 x 25	M933-24070-60	M24-3.00 x 70
M931-10070-60 M931-10080-60	M10-1.50 x 70 M10-1.50 x 80	M933-08010-60	M8-1.25 x 10	111000 2 107 0 00	W.E. 1 0.00 X 10
M931-10080-82	M10-1.25 x 80*	M933-08012-60	M8-1.25 x 12	Pan Head Mach	ine Screws
M931-10090-60	M10-1.50 x 90	M933-08016-60	M8-1.25 x 16		
M931-10090-82	M10-1.50 x 90*	M933-08020-60	M8-1.25 x 20	M7985A-03010-20	
M931-10100-60	M10-1.50 x 100	M933-08025-60	M8-1.25 x 25	M7985A-03012-20	M3-0.50 x 12
M931-10110-60	M10-1.50 x 110	M933-08030-60	M8-1.25 x 30	M7985A-04010-20	M4-0.70 x 10
M931-10120-60	M10-1.50 x 120	M933-08030-82	M8-1.25 x 30*	M7985A-04016-20	M4-0.70 x 16
M931-10130-60	M10-1.50 x 130	M933-10012-60	M10-1.50 x 12	M7985A-04020-20	M4-0.70 x 20
M931-10140-60	M10-1.50 x 140	M961-10020-60	M10-1.25 x 20	M7985A-04050-20	M4-0.70 x 50
M931-10180-60	M10-1.50 x 180	M933-10020-60	M10-1.50 x 20	M7985A-04100-20	M4-0.70 x 100
M931-10235-60	M10-1.50 x 235	M933-10025-60	M10-1.50 x 25	M7985A-05010-20	M5-0.80 x 10
M931-10260-60 M960-10330-60	M10-1.50 x 260 M10-1.25 x 330	M961-10025-60	M10-1.25 x 25	M7985A-05012-20	
10330-60	W10-1.25 X 330	M933-10025-82	M10-1.50 x 25*	M7985A-05016-20	
M931-12045-60	M12-1.75 x 45	M961-10030-60	M10-1.25 x 30	M7985A-05020-20	
M960-12050-60	M12-1.25 x 50	M933-10030-60	M10-1.50 x 30	M7985A-05025-20	
M960-12050-82	M12-1.25 x 50*	M933-10030-82	M10-1.50 x 30*	M7985A-05030-20	
M931-12050-60	M12-1.75 x 50	M961-10035-60	M10-1.25 x 35	M7985A-05080-20	
M931-12050-82 M931-12055-60	M12-1.75 x 50* M12-1.75 x 55	M933-10035-60 M933-10035-82	M10-1.50 x 35 M10-1.50 x 35*	M7985A-05100-20	M5-0.80 x 100
M931-12060-60	M12-1.75 x 60	M961-10040-60	M10-1.25 x 40	M7985A-06100-20	M6-1 00 x 100
M931-12060-82	M12-1.75 x 60*	WIOO 1-10040-00	W10-1.20 A 40	000, 100 100 20	1.00 X 100
M931-12065-60	M12-1.75 x 65			Flat Head Mach	ine Screwe
M931-12075-60	M12-1.75 x 75				
M931-12080-60	M12-1.75 x 80			M965A-04012-SS	M4-0.70 x 12
M931-12090-60	M12-1.75 x 90			M965A-05012-SS	M5-0.80 x 12
M931-12100-60	M12-1.75 x 100			M965A-05016-20	M5-0.80 x 16
M931-12110-60	M12-1.75 x 110			M965A-06012-20	M6-1.00 x 12

^{*} This metric hex bolt's hardness is grade 10.9.

TP-6482 8/06 Appendix 77

Metric, continued

Part No. Hex Nuts	Dimensions	Туре
M934-03-50	M3-0.50	Standard
M934-04-50	M4-0.70	Standard
M934-04-B	M4-0.70	Brass
M934-05-50	M5-0.80	Standard
M934-06-60	M6-1.00	Standard
M934-06-64	M6-1.00	Std. (green)
M6923-06-80	M6-1.00	Spiralock
M982-06-80	M6-1.00	Elastic Stop
M934-08-60	M8-1.25	Standard
M6923-08-80	M8-1.25	Spiralock
M982-08-80	M8-1.25	Elastic Stop
M934-10-60	M10-1.50	Standard
M934-10-60F	M10-1.25	Standard
M6923-10-80	M10-1.50	Spiralock
M6923-10-62	M10-1.50	Spiralock†
M982-10-80	M10-1.50	Elastic Stop
M934-12-60	M12-1.75	Standard
M934-12-60F	M12-1.25	Standard
M6923-12-80	M12-1.75	Spiralock
M982-12-80	M12-1.75	Elastic Stop
M982-14-60	M14-2.00	Elastic Stop
M6923-16-80	M16-2.00	Spiralock
M982-16-80	M16-2.00	Elastic Stop
M934-18-80	M18-2.5	Standard
M982-18-60	M18-2.50	Elastic Stop
M934-20-80	M20-2.50	Standard
M982-20-80	M20-2.50	Elastic Stop
M934-22-60	M22-2.50	Standard
M934-24-80	M24-3.00	Standard
M982-24-60	M24-3.00	Elastic Stop
M934-30-80	M30-3.50	Standard
Washers		

Washers

Part No.	ID	OD	Thick.	Bolt/ Screw
M125A-03-80	3.2	7.0	0.5	M3
M125A-04-80	4.3	9.0	0.8	M4
M125A-05-80	5.3	10.0	1.0	M5
M125A-06-80	6.4	12.0	1.6	M6
M125A-08-80	8.4	16.0	1.6	M8
M125A-10-80	10.5	20.0	2.0	M10
M125A-12-80	13.0	24.0	2.5	M12
M125A-14-80	15.0	28.0	2.5	M14
M125A-16-80	17.0	30.0	3.0	M16
M125A-18-80	19.0	34.0	3.0	M18
M125A-20-80	21.0	37.0	3.0	M20
M125A-24-80	25.0	44.0	4.0	M24

78 Appendix TP-6482 8/06

 $[\]dagger$ This metric hex nut's hardness is grade 8.

KOHLER POVVER SYSTEMS

KOHLER CO. Kohler, Wisconsin 53044 Phone 920-565-3381, Fax 920-459-1646 For the nearest sales/service outlet in the US and Canada, phone 1-800-544-2444 KohlerPowerSystems.com

Kohler Power Systems Asia Pacific Headquarters 7 Jurong Pier Road Singapore 619159 Phone (65) 6264-6422, Fax (65) 6264-6455